跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳怡安
研究生(外文):Yi-An Chen
論文名稱:奈米薄片之合成及應用於二氧化鈦-二氧化釩薄膜配向控制之特性研究
論文名稱(外文):Studies on synthesis of exfoliate nanosheet and application on orientation control of TiO2-VO2 thin films
指導教授:邱德威
指導教授(外文):Te-Wei Chiu
口試委員:施文欽楊重光
口試日期:2014-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:85
中文關鍵詞:奈米薄片配向控制二氧化鈦二氧化釩化學溶液法
外文關鍵詞:nanosheetorientation controlTiO2VO2chemical solution deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
奈米薄片之製備及用於TiO2薄膜配向控制之研究,由於以簡單的化學溶液法製備具有配向性的薄膜之研究較少,因此,以奈米薄片作為模版之化學溶液法製備薄膜之研究更少。本研究一開始先合成無機層狀化合物,然後以化學剝離法製備奈米薄片分散液,其間以XRD 鑑定,無機層化合物在合成過程及剝離製程中的結晶型態,得到KCa2Nb3O10、HCa2Nb3O10相,以TEM分析所分離之奈米薄片Ca2Nb3O10 (CNO)之形貌為片狀,以SEM 及AFM 觀察奈米薄片黏貼於基板之狀況,藉此建立在基板上形成奈米薄片之製程。
接著利用化學溶液法製備二氧化鈦(TiO2)薄膜,以旋轉塗佈法在玻璃基板上鍍膜,並探討添加CNO奈米薄片對TiO2薄膜之影響。再以TiO2薄膜及TiO2-CNO薄膜為緩衝層製備二氧化釩(VO2)薄膜,提升VO2薄膜的光學特性。以XRD圖觀察得知TiO2薄膜隨著熱處理溫度升高,出現銳鈦礦相的(101)峰,然而添加CNO的TiO2薄膜具有優選方位(004),表示CNO對TiO2薄膜配向性具有顯著的作用。
最後以TiO2薄膜及TiO2-CNO薄膜為緩衝層,成長VO2薄膜,藉由添加緩衝層提升VO2薄膜熱致色變特性。利用FTIR、四點探針進行光學及電性特性的量測。由XRD圖及FTIR的測量得知,VO2成長在TiO2及TiO2-CNO緩衝層上,可提升其結晶性並降低磁滯寬度。VO2薄膜電阻率在相變溫度前後的變化可達100倍左右。


The purpose of this thesis is to analyze preparation of exfoliate nanosheet and its applications on orientation control of TiO2 thin films. There are only a few studies on orientation controlled thin films prepared via simple chemical solution deposition. Therefore, there is little application of nanosheet on orientation control of thin film growth with chemical solution deposition. First of all, synthesis of an inorganic layered compound and exfoliate inorganic layered compound via chemical method, such as ion exchange and ion intercalation, can be used to prepare ceramic nanosheet. The crystal structure of layered compound were identified by XRD; KCa2Nb3O10 and HCa2Nb3O10 phase were obtained. TEM showed the exfoliated Ca2Nb3O10 (CNO) nanosheet was sheet-like shaped. SEM and AFM was used to observe the morphology of nanosheet attached on substrate. The nanosheet prepared on the substrate as a template layer.
Secondly, TiO2 thin films were deposited on glass substrate by spin coating. The influence of TiO2 thin films with CNO additive was studied. The XRD pattern showed that TiO2 films prepared with CNO nanosheets demonstrated strong (004) peak with increasing annealing temperature, indicating that the c-axis preferential oriented TiO2 thin films were obtained. Experimental results showed that orientation preferred (004) of TiO2 thin films was influenced by CNO concentration and heat treatment temperature.
Finally, VO2 thin films were deposited on glass substrates with TiO2 and TiO2-CNO thin films applied as buffer layers between the VO2 films and the substrates in order to investigate the effect of buffer layer on the formation and the thermochromic properties of VO2 film. In this case, electrical and optical properties were analyzed by FTIR, Four-point probe measurement. With TiO2 thin films and TiO2-CNO thin films as buffer layers, the crystallinity increased and reduced the transition temperature and hysteresis width (5°C). The resistance was varied with more than 2 orders under phase transition temperature.


摘 要 II
ABSTRACT IV
誌謝 VI
CONTENTS VII
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
1.1 Forward 1
1.2 Smart window 1
1.3 Influence of Buffer layer on thin films 2
1.4 Motivation 3
Chapter 2 Literatures review and theory 5
2.1 Introduction and review of oxide nanosheets 5
2.1.1 Synthesis of oxide nanosheet 6
2.1.2 Perovskite crystal structure 7
2.1.3 The ion exchange of layered compound and exfoliation 9
2.1.4 Chemical synthesis of oxide nanosheets film 10
2.1.5 Langmuir-Blodgett deposition 11
2.2 Introduction and review of Vanadium dioxide 13
2.2.1 Properties and crystalline structure of Vanadium dioxide 13
2.2.2 Preparation technique of vanadium dioxide 14
2.3 Effect of buffer layer on the VO2 thin films 15
2.4 Titanium dioxide thin films 16
2.5 Introduction of chemical solution deposition 18
2.5.1 Type of chemical solution deposition 18
2.5.2 Four stage of spin coating method 19
Chapter 3 Experimental section 21
3.1 Experimental 21
3.1.1 Preparation of layered compound and nanosheets 21
3.1.2 Preparation of TiO2-VO2 multilayer thin films 22
3.1.3 Substrate pretreatment 22
3.2 Ca2Nb3O10 nanosheet section 23
3.2.1 Experimental materials 23
3.2.2 Preparation of layered compound powders 23
3.2.3 Preparation of nanosheet suspensions 24
3.2.4 Preparation of nanosheet film (LB film) 24
3.3 Titanium dioxide section 26
3.3.1 Experimental materials 26
3.3.2 Preparation of TiO2 precursor solution 26
3.3.3 Preparation of TiO2 -CNO precursor solution 26
3.3.4 Preparation of TiO2 thin film 27
3.4 Vanadium dioxide section 29
3.4.1 Experimental materials 29
3.4.2 Preparation of VO2 precursor solution 29
3.4.3 Preparation of VO2 film 29
3.5 Instrument for experimental equipment 31
3.5.1 Spin coating deposition 31
3.5.2 Annealing of thin film 31
3.5.3 High speed Centrifuge 32
3.5.4 Refluxing device 32
3.6 Characteristic analysis 34
3.6.1 Crystalline structure determination 34
3.6.2 Scanning electron microscope 35
3.6.3 Atomic force microscopy (AFM) 36
3.6.4 Transmission Electron Microscope (TEM) 37
3.6.5 Optical properties measurement 38
3.6.6 Electrical properties measurement 40
Chapter 4 Results and discussion 41
4.1 Ca2Nb3O10 nanosheet section 41
4.1.1 Crystalline structure determination of layered compound 41
4.1.2 SEM observation of layered compound 43
4.1.3 SEM observation of Ca2Nb3O10 nanosheet films 45
4.1.4 Topography of Ca2Nb3O10 nanosheets (AFM) 46
4.1.5 Morphology of Ca2Nb3O10nanosheets (TEM) 47
4.1.6 Summary 50
4.2 TiO2 section 51
4.2.1 Crystalline structure determination 51
4.2.3 SEM observation 56
4.2.4 Optical property of TiO2 thin film (UV-Vis) 59
4.2.5 Summary 60
4.3 VO2 part 61
4.3.1 Crystalline structure determination 61
4.3.2 SEM observation 66
4.3.3 Thermochromic properties of VO2 thin films (FT-IR) 69
4.3.4 Electrical properties 73
4.3.5 Summary 75
Chapter 5 Conclusions 76
References 77
Conference Presentations 85




1.Yanfeng Gao, Hongjie Luo, Zongtao Zhang, Litao Kang, Zhang Chen, Jing Du, Minoru Kanehira, Chuanxiang Cao, "Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing" Nano Energy 1 221-246 (2012).
2.M. Soltani, M. Chaker, E. Haddad, R.V. Kruzelesky, "Thermochromic vanadium dioxide smart coatings grown on Kapton substrates by reactive pulsed laser deposition" Journal of Vacuum Science & Technology A 24 612-617 (2006).
3.W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B.K. Meyer, W. Niessner, D. Schalch, A. Scharmann, "Tungsten and fluorine co-doping of VO2 films" Thin Solid Films 402 226-231 (2002).
4.Amy G Jung "A Green Growth Strategy and Now, Smart Windows-Korea has come a long way in becoming a Green Hub" (2011).
5.Te-Wei Chiu, N. Wakiya, K. Shinozaki, and N. Mizutani, "Preparation of Tungsten Bronze Type Ferroelectric Ba0.75Y0.166Nb2O6 Thin Films by RF Magnetron Sputtering with LaNiO3 Bottom Electrodes" Key Engineering Materials 228-229 99-106 (2002).
6.Te-Wei Chiu, Naoki Wakiya, Kazuo Shinozaki, Nobuyasu Mizutani, "Growth of highly (001)-textured strontium barium niobate thin films on epitaxial LaNiO3/CeO2/YSZ/Si(100)" Thin Solid Films 426 62-67 (2003).
7.Te-Wei Chiu, K. Tonooka, and N. Kikuchi, "Fabrication of ZnO and CuCrO2:Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes" Thin Solid Films 516 5941-5947 (2008).
8.Te-Wei Chiu, Naoki Wakiya, Kazuo Shinozaki and Nobuyasu Mizutani, "Effects of ambient gas and film thickness on orientation and surface morphology of Sr0.5Ba0.5Nb2O6 thin films prepared by pulsed laser deposion" Journal of the Ceramic Society of Japan 110 368-372 (2002).
9.Te-Wei Chiu, Naoki Wakiya, Kazuo Shinozaki and Nobuyasu Mizutani, "Effect of substrate size on crystalline orientation and electrical properties of (Ba, La)4Ti3O12 thin films" Journal of the Ceramic Society of Japan 112 266-270 (2004).
10.Te-Wei Chiu, Naoki Wakiya, Kazuo Shinozaki and Nobuyasu Mizutani, "Orientation Control of Bi-La-Ti-O Thin Films Derived by Chemical Solution Deposition Method" Key Engineering Materials 248 49-52 (2003).
11.Te-Wei Chiu, K. Tonooka, and N. Kikuchi, "Growth of b-axis oriented VO2 thin films on glass substrates using ZnO buffer layer" Applied Surface Science 256 6834-6837 (2010).
12.Te-Wei Chiu, K. Tonooka, and N. Kikuchi, "Influence of oxygen pressure on the structural, electrical and optical properties of VO2 thin films deposited on ZnO/glass substrates by pulsed laser deposition" Thin Solid Films 518 7441-7444 (2010).
13.Y. Ebina, T. Sasaki, M. Watanabe, "Study on exfoliation of layered perovskite-type niobates" Solid State Ionics 151 177-182 (2002)
14.T. S. Naoomi Yamada, Kenji Taira, Yasushi Hirose, Shoichiro Nakao, "Enhanced Carrier Transport in Uniaxially (001)-Oriented Anatase Ti0.94Nb0.06O2 Films Grown on Nanosheet Seed Layers" The Japan Society of Applied Physics 4 1-3 (2011).
15.Novoselov, K. S. Geim, A. K. Morozov, S. V. Jiang, D. Zhang, Y. Dubonos, S. V. Grigorieva, I. V. Firsov, "Electric field effect in atomically thin carbon films" Science 306 666-669 (2004).
16.M. Osada and T. Sasaki, "Exfoliated oxide nanosheets: new solution to nanoelectronics" Journal of Materials Chemistry 19 2503-2511(2009).
17.Sasaki, T., "Fabrication of nanostructured functional materials using exfoliated nanosheets as a building block" Journal of the Ceramic Society of Japan 115 9-16 (2007).
18.Minoru Osada and Takayoshi Sasaki, "Exfoliated oxide nanosheets: new solution to nanoelectronics" Journal of Materials Chemistry 19 2503-2511 (2009).
19.Ma, R. Z.; Sasaki, T., "Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites" Advanced Materials 22 5082-5104 (2010).
20.Dmitri Golberg, "Nanomaterials: Exfoliating the inorganics" Nature Nanotechnology 6 200-201 (2011).
21.Schaak, R. E.; Mallouk, T. E., "Self-assembly of tiled perovskite monolayer and multilayer thin films" Chem. Mater. 12 2513-2516 (2000).
22.Takayoshi Sasaki, Yasuo Ebina, Tomohiro Tanaka, Masaru Harada, and Mamoru Watanabe, "Layer-by-layer assembly of titania nanosheet/ polycation composite films" Chemistry of materials 13 4661-4667 (2001).
23.Raymond E. Schaak and Thomas E. Mallouk, "Perovskites by design: A toolbox of solid-state reactions" Chemistry of materials 14 1455-1471 (2002).
24.L. Z. Wang, Y. Ebina, K. Takada, K. Kurashima and T. Sasaki, "A new mesoporous manganese oxide pillared with double layers of alumina" Advanced Materials 16 1412-1416 (2004).
25.W. Ebina, Y. Takada, K. Sasaki, "Ultrathin films and hollow shells with pillared architectures fabricated via layer-by-layer self-assembly of titania nanosheets and aluminum keggin ions" J. Phys. Chem. B 108 4283-4288 (2004).
26.Dr. Yoshitake Masuda, Nanofabrication, Hard cover, 153-166 (2011).
27.Renzhi Ma and Takayoshi Sasaki, "Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites," Advanced Materials 22 5082-5104 (2010).
28.L. Gao, Q. Gao, Q. Wang, S. Peng, and J. Shi, "Immobilization of hemoglobin at the galleries of layered niobate HCa2Nb3O10" Biomaterials 26 5267-75 (2005).
29.Y. Chen, X. Zhao, H. Ma, S. Ma, G. Huang, Y. Makita, "Structure and dehydration of layered perovskite niobate with bilayer hydrates prepared by exfoliation/self-assembly process," Journal of Solid State Chemistry 181 1684-1694 (2008).
30.Yamaki, T. Asai, K."Alternate Multilayer Deposition from Ammonium Amphiphiles and Titanium Dioxide Crystalline Nanosheets Using the Langmuir-Blodgett Technique" Langmuir 17 2564-2567 (2001).
31.M. Osada and T. Sasaki, "Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks" Advanced Materials 24 210-218 (2012).
32.T.D. Manning, I.P. Parkin, R.J.H. Clark, D. Sheel, M.E. Pemble, D. Vernadou, "Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides" Journal of Materials Chemistry 12 2936–2939 (2002).
33.Volker Eyert, "The metal-insulator transitions of VO2: A band theoretical approach" Eyert, V. Annalen Der Physik 11 650-702 (2002).
34.P. Baum, D. S. Yang, A. H. Zewail, "4D Visualization of Transitional Structures in Phase Transformations by Electron Diffraction" Science 318 788–792 (2007).
35.Masato Tazawa, Ping Jin, Takeshi Miki, Kazuki Yoshimura, Kazuo Igrashi, Sakae Tanemura, "IR properties of SiO2 deposited on V1−xWxO2 thermochromic films by vacuum evaporation" Thin Solid Films 375 100-103 (2000).
36.Ping Jin and Sakae Tanemura, "Formation and Thermochromism of VO2 Films Deposited by RF Magnetron Sputtering at Low Substrate Temperature" Jpn. J. Appl. Phys. 33 1478-1483 (1994).
37.R. T. Rajendra kumar, B. Karunagaran, D. Mangalaraj, Sa. K. Narayandass, P. Manoravi, M. Joseph, "Properties of pulsed laser deposited vanadium oxide thin film thermistor" Materials Science in Semiconductor Processing 6 375–377 (2003).
38.Yuan Ningyi, Li Jinhua, Lin Chenglu, "Valence reduction process from sol-gel V2O5 to VO2 thin films" Applied Surface Science 191 176-180 (2002).
39.T. J. Hanlon, R. E. Walker, J. A. Coath , and M. A. Richardon, "Comparison between vanadium dioxide coatings on glass produced by sputtering, alkoxide and aqueous sol–gel methods" Thin Solid Films 405 234-237 (2002).
40.H. Zhou, M. F. Chisholm, T. H. Yang, S. J. Pennycook, and J. Narayan, "Role of interfacial transition layers in VO2/Al2O3 heterostructures" Journal of Applied Physics 110 073515 1-7 (2011).
41.G. Xu, P. Jin, M. Tazawa, and K. Yoshimura, "Thickness Dependence of Optical Properties of VO2 Thin Films Epitaxially Grown on Sapphire (0001)" Applied Surface Science 244 449-452 (2005).
42.H. Koo, L. Xu, K.-E. Ko, S. Ahn, S.-H. Chang, C. Park, "Effect of Oxide Buffer Layer on the Thermochromic Properties of VO2 Thin Films" Journal of Materials Engineering and Performance 22 3967-3973 (2013).
43.N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, "Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance" Solar Energy Materials and Solar Cells 93 1685-1687 (2009).
44.A.M Gaur Member, Rajat Joshi , Mukesh Kumar Member, "Deposition of Doped TiO2 Thin Film by Sol Gel Technique and its Characterization: A Review" Proceedings of the World Congress on Engineering Vol II WCE 2011, July 6-8, London, U.K. (2011).
45.C. Su, B.-Y. Hong, C.-M. Tseng, "Sol–gel preparation and photocatalysis of titanium dioxide" Catalysis Today 96 119-126 (2004).
46.Mohammed. H. Shinen, Khalid. I. Ajeel , Fadhil. A. Rasin, "Preparation of titanium dioxide (TiO2) via the sol-gel process" Journal of Babylon University 20 232-240 (2012).
47.Puangrat Kajitvichyanukula, Jirapat Ananpattarachaia, Siriwan Pongpom, "Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process" Science and Technology of Advanced Materials 6 352-358 (2005).
48.Ulrike Diebold, "The surface science of titanium dioxide" Surface Science Reports 48 53-229 (2003).
49.From Wikipedia, the free encyclopedia,
Website : http://en.wikipedia.org/wiki/Sol-gel
50.Yung-Po Wang "Preparation of Cu-based delafossite thin films and its antibacterial properties", Master degree, National Taipei University of Technology , Institute of Materials Science and Engineering, 2012 (Advisor: Te-Wei Chiu)
51.Po-Pin Hung "The Manufacturing and Characterization of Sol-Gel V1-x-yWxSiyO2 Thin Films for Uncooled Thermal Detectors", Master degree, National Taipei University of Technology, Chemical Engineering, 2006 (Advisor: Thomas C-K Yang)
52.F. F. Xu, Y. Ebina, Y. Bando, and T. Sasaki, "Structural Characterization of (TBA, H)Ca2Nb3O10 Nanosheets Formed by Delamination of a Precursor-Layered Perovskite" The Journal of physical chemistry. B 107 9638-9645 (2003).
53.K. A. Masaru Muramatsu, Yasuo Ebina, Kezhi Wang, and T. I. Takayoshi Sasaki, Koji Miyake, and Masa-aki Haga, "Fabrication of Densely Packed Titania Nanosheet Films on Solid Surface by Use of Langmuir-Blodgett Deposition Method without Amphiphilic Additives" Langmuir 21 6590-9595 (2005).
54.J. Wu, W. Huang, Q. Shi, J. Cai, D. Zhao, Y. Zhang, et al., "Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method" Applied Surface Science 268 556-560 (2013).
55.Yi-Chi Huang, Magneto transport properties and Seebeck coefficient of thermoelectric material Bi-Sb-Te nanoplates, Master degree,National Central University, Physics (2013).
56.Y. Ebina, T. Sasaki, M. Watanabe, "Study on exfoliation of layered perovskite-type niobates" Solid State Ionics 151 177-182 (2002).
57.L. Hu, T. Yoko, H. Kozuka, S. Sakko, "Effects of solvent on properties of sol–gel derived TiO2 coating films" Thin Solid Films 219 18-23 (1992).
58.D.J. Kim, S.H. Hahn, S.H. Oh, E.J. Kim, "Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating" Mater. Lett. 57 355-360 (2000).
59.Puangrat Kajitvichyanukula, Jirapat Ananpattarachaia, Siriwan Pongpom, "Sol-gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process" Science and Technology of Advanced Materials 6 352-358 (2005).
60.Yuanjie Xua, Wanxia Huanga, Qiwu Shia, Yang Zhanga, Yubo Zhanga, Linwei Songa, Yaxin Zhangb Effects of porous nano-structure on the metal–insulator transition in VO2 films Applied Surface Science 259 256-260 (2012).
61.B.-G. Chae, H.-T. Kim, S.-J. Yun, B.-J. Kim, Y.-W. Lee, and K.-Y. Kang, "Comparative Analysis of VO2 Thin Films Prepared on Sapphire and SiO2/Si Substrates by the Sol-Gel Process" Japanese Journal of Applied Physics 46 738-743 (2007).


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊