|
[1] Mikolov, Tomas, et al. ”Efficient estimation of word representations in vector space.” arXiv preprint arXiv:1301.3781 (2013). [2] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error propagation. No. ICS-8506. California Univ San Diego La Jolla Inst for Cognitive Science, 1985. [3] Elman, Jeffrey L. ”Finding structure in time.” Cognitive science 14.2 (1990): 179-211. [4] Jordan, Michael I. ”Serial order: A parallel distributed processing approach.” Advances in psychology. Vol. 121. North-Holland, 1997. 471-495. [5] Mozer, Michael C. ”A focused backpropagation algorithm for temporal.” Backpropagation: Theory, architectures, and applications 137 (1995). [6] Hochreiter, Sepp, and Jürgen Schmidhuber. ”Long short-term memory.” Neural computation 9.8 (1997): 1735-1780. [7] Chung, Junyoung, et al. ”Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:1412.3555 (2014). [8] Sutton, Richard S., and Andrew G. Barto. Introduction to reinforcement learning. Vol. 135. Cambridge: MIT press, 1998. [9] Watkins, Christopher JCH, and Peter Dayan. ”Q-learning.” Machine learning 8.3-4 (1992): 279- 292. [10] Peters, Jan, and Stefan Schaal. ”Policy gradient methods for robotics.” 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006. [11] Williams, Ronald J. ”Simple statistical gradient-following algorithms for connectionist reinforcement learning.” Machine learning 8.3-4 (1992): 229-256. [12] Peters, Jan, and Stefan Schaal. ”Natural actor-critic.” Neurocomputing 71.7-9 (2008): 1180-1190. [13] Dahl, Deborah A., et al. ”Expanding the scope of the ATIS task: The ATIS-3 corpus.” Proceedings of the workshop on Human Language Technology. Association for Computational Linguistics, 1994. [14] Rummery, Gavin A., and Mahesan Niranjan. On-line Q-learning using connectionist systems. Vol. 37. Cambridge, England: University of Cambridge, Department of Engineering, 1994. [15] Steeneken, Herman JM, and Andrew Varga. ”Assessment for automatic speech recognition: I. Comparison of assessment methods.” Speech Communication 12.3 (1993): 241-246. [16] Varga, Andrew, and Herman JM Steeneken. ”Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems.” Speech communication 12.3 (1993): 247-251. [17] Seide, Frank, and Amit Agarwal. ”CNTK: Microsoft’s open-source deep-learning toolkit.” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. [18] Jang, Eric, Shixiang Gu, and Ben Poole. ”Categorical reparameterization with gumbel-softmax.” arXiv preprint arXiv:1611.01144 (2016).
|