跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯素君
研究生(外文):Su-Chun How
論文名稱:抑制雞蛋白溶菌酶之類澱粉纖維形成
論文名稱(外文):Inhibition of Amyloid Fibril Formation of Hen Egg White Lysozyme
指導教授:王勝仕
指導教授(外文):Sheng-Shih Wang
口試委員:謝學真林達顯賴進此侯劭毅蔡伸隆吳宛儒蔡雅慧
口試委員(外文):Hsyue-Jen HsiehTa-Hsien LinJinn-Tsyy LaiShao-Yi HouShen-Long TsaiJosephine Wan-Ru WuYa-Hui Tsai
口試日期:2019-01-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:110
中文關鍵詞:類澱粉纖維雞蛋白溶菌酶抑制小分子
DOI:10.6342/NTU201900613
相關次數:
  • 被引用被引用:0
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
類澱粉纖維之形成是幾種不同退行性人類疾病的關鍵病理學特徵。有證據表明,澱粉樣蛋白原纖維緩解/抑制被認為是治療這些疾病的有希望的方法。然而,目前尚未有任一抑制劑或緩解劑可以達成此一目標。
在本研究中吾人使用雞蛋白溶菌酶來當作蛋白質模型,其原因主要歸因於其結構與人類溶菌酶序列相似性很高,且形成之類澱粉纖維結構也與之十分類似,再加上人類溶菌酶被認為是導致全身性之類澱粉沉積症有關。因此吾人透過研究雞蛋白溶菌酶纖維化之過程,可以幫助了解如何抑制類澱粉蛋白之纖維化。
本研究使用了三種不同之小分子抑制劑,分別為固綠FCF、亞甲基藍,及亮藍G。其中固綠FCF與亮藍G 兩者皆為三苯甲烷類之染料。其中固綠FCF已被美國食品藥品管理局(FDA)核可作為食用色素;而亮藍G則已被證實為安全且可以通過血腦屏障之小分子。至於亞甲基藍則是吩噻嗪家族化合物,由於其不具毒性也無其它副作用,因此被用作治療各種癌症及非癌症之藥物。除此之外,亞甲基藍已證實為一種具有潛力治療阿茲海默症之藥物。
這裡吾人利用不同之分析方法,包含自身螢光、ThT螢光、ANS螢光、電子穿透顯微鏡及圓二色光譜儀等,分別探討固綠FCF、亞甲基藍及亮藍G三種染劑對於雞蛋白溶菌酶形成類澱粉纖維之影響。ThT螢光強度結果顯示固綠FCF(25%)及亮藍G(32.8%)與亞甲基藍(1:1.11以下螢光強度沒有明顯之變化)相較具有較佳抑制類澱粉纖維形成之效果。而固綠FCF與亮藍G之圓二色光譜儀之結果卻有些許不同,固綠FCF抑制了β-摺板結構的形成;而亮藍G則依舊維持了相若之β-摺板結構之量。此結果表明亮藍G並無法降低類澱粉纖維之量。而由TEM之結果卻可以發現亮藍G使形成之類澱粉纖維變短。因此可以推測亮藍G抑制類澱粉纖維之機制為誘導蛋白質形成較短之纖維。但因為形成之纖維量與未添加小分子之蛋白質相若,故可以保留較多之原態蛋白質於樣品中。蛋白質電泳結果證實了這點。
本研究之結果顯示影響蛋白質形成類澱粉纖維之主要機制為小分子藉由與疏水胺基酸之交互作用,進而阻礙了蛋白質疏水區之裸露。而具有硫酸根之分子(亮藍G與固綠FCF)因會與蛋白質產生靜電作用力,因而提升了抑制蛋白質纖維化之能力。而亮藍G與固綠FCF之不同在於亮藍G所帶之負電較少,且苯環上多了兩個甲基,因而影響蛋白質形成較短之類澱粉纖維。
綜合以上結果得知小分子之結構、大小、官能基之種類皆會影響類蛋白質類澱粉纖維化。而吾人希望藉由探討小分子對蛋白質類澱粉纖維化之影響,能對發展治療類澱粉纖維症之藥物有些許之幫助。
Amyloid fibril formation serves as a key pathological feature of several different human degenerative diseases. Evidence suggests that mitigation/inhibition of amyloid fibril formation is considered a promising approach toward treating these diseases. However, as of now, there has been no effective small molecule available to cure amyloid diseases.
The reasons why hen egg white lysozyme was used as the model protein in this research work are as follows: (1) hen egg white lysozyme is structurally homologous to human lysozyme, which is the protein associated with hereditary systemic amyloidosis, and (2) its fibrils were found to resemble the fibrillar species of human lysozyme. Investigation of amyloid fibril formation using hen egg white lysozyme can aid in a better understanding of the possible inhibition strategies for tackling amyloid aggregation.
In our study, we used three kinds of small molecules including fast green FCF, methylene blue, and brilliant blue G. Both fast green FCF and brilliant blue G are triarylmethane dyes, fast green FCF is approved by the FDA as a food dye, while brilliant blue G has been shown to be safe with good blood–brain-barrier-permeability. Methylene blue, a compound belonging to the phenothiazinium family, has the potential to treat a variety of cancerous and non-cancerous diseases with low toxicity and minimal side effects. Furthermore, evidence demonstrates that methylene blue may be a promising molecules for the treatment of Alzheimer’s disease.
Here, we examine the effects of fast green FCF, methylene blue and brilliant blue G on amyloid fibril formation derived from hen egg white lysozyme using a variety of spectroscopic techniques, such as intrinsic fluorescence, ANS fluorescence and ThT fluorescence assays, transmission electron microscopy, and circular dichroism spectroscopy. ThT fluorescence intensity results show that fast green FCF(25%) and brilliant blue G(32.8%) possess better inhibition efficacy than methylene blue (below 1:1.11,ThT intensity has no significant change). However, CD results reveal that fast green FCF and brilliant blue G affect hen egg white lysozyme differently. The addition of fast green FCF was observed to reduce the β-sheet secondary structure content associated with amyloid fibrillogenesis, which was not found in the case of brilliant blue G. Our results demonstrate that the addition of brilliant blue G is not able to suppress the amyloid fibril-forming propensity of lysozyme but only shorten the length of fibrillary species. Moreover, our SDS-PAGE results suggest that more native proteins are retained in the sample.
In addition, our results further suggest that the observed inhibitory actions against amyloid fibril formation is mainly correlated with the interaction between the small molecules and protein hydrophobic sites. Given that both fast green FCF and brilliant blue G have sulfonate functional groups, the two molecules are able to electrostatically interact with the protein, thus further mitigating amyloid fibril formation. In addition, we surmise that the less negative charge and two additional methyl groups attached to the triphenylmethane structure might account for why the presence of brilliant blue G induces the formation of shorter fibrils, but can not suppress amyloid fibrillogenesis. Taken together, we conclude that small molecules’ inhibitory activity toward amyloid fibril formation is dependent upon the structure, size, and types of functional groups attached to them. We believe exploring the effects of small molecule on amyloid fibrillogenesis of lysozyme can contribute to the development of drugs for the treatment of amyloid diseases.
誌謝i
中文摘要 iii
英文摘要 v
目錄vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1.研究動機 1
1.2.章節概述 1
第二章 文獻回顧 3
2.1.蛋白質摺疊 (protein folding) 3
2.2.與蛋白質狀態相關之蛋白質構形(protein conformation) 5
2.3.蛋白質異常摺疊(protein misfolding)及蛋白質聚集(protein aggregation) 7
2.3.1.蛋白質聚集的起因與特徵 7
2.3.2.蛋白質聚集體之種類 8
2.4.蛋白質聚集與細胞毒殺性之關係 9
2.5.具聚集傾向(aggregate-forming propensity)或類澱粉傾向(amyloid-forming propensity)之蛋白質 11
2.5.1.與疾病相關之蛋白質類澱纖維或蛋白質聚集體 11
2.5.2.與疾病(nonpathogenic/non-disease related)無關之類澱纖維或蛋白質聚集體 13
2.5.3.雞蛋白溶菌酶 14
2.6.影響類澱粉纖維之形成或導致聚集之修飾物質(modifiers) 16
2.6.1.非專一性修飾分子物質 17
2.6.2.專一性修飾物質 20
2.6.3.小分子抑制劑 21
2.7.蛋白質聚集疾病/類澱粉症之可能治療策略 24
第三章 實驗藥品、儀器與步驟 25
3.1.實驗藥品 25
3.2.實驗儀器 25
3.3.藥品與實驗方法 26
3.3.1.雞蛋白溶菌酶之製備 27
3.3.2.濁度分析法 27
3.3.3.ThT 螢光分析法 28
3.3.4.穿透式電子顯微鏡分析 29
3.3.5.圓二色光譜分析法 29
3.3.6.自身螢光與色胺酸(tryptophan)光譜分析法 29
3.3.7.同步螢光分析法 30
3.3.8.碘化鉀(Potassium iodide (KI))螢光淬滅(quenching)實驗 31
3.3.9.ANS疏水螢光分析法 33
3.3.10.直角光散射(right angle light scattering)實驗 34
3.3.11.動態光散射(dynamic light scattering)分析法 34
3.3.12.十二烷基硫酸鈉聚丙烯醯胺凝膠電泳分析方法 34
第四章 探討固綠FCF對類澱粉纖維形成之影響 36
4.1.前言 36
4.2.結果與討論 39
4.2.1.固綠FCF 對於雞蛋白溶菌酶纖維形成之影響 39
4.2.2.固綠FCF 對於雞蛋白溶菌酶二級結構之影響 41
4.2.3.固綠FCF 對於雞蛋白溶菌酶結構之影響 43
4.2.4.固綠FCF 對於雞蛋白溶菌酶大小分佈之影響 44
4.2.5.探討固綠FCF 對於崩解(disaggregation)雞蛋白溶菌酶所形成之類澱粉纖維之能力 45
4.2.6.探討固綠FCF 抑制類澱粉纖維之可能機制 49
第五章 探討亞甲基藍對類澱粉纖維形成之影響 51
5.1.前言 51
5.2.結果與討論 54
5.2.1.藉由濁度之量測探討亞甲基藍對於母雞蛋白溶菌聚集之影響 54
5.2.2.藉由動態光散射之量測探討亞甲基藍對於母雞蛋白溶菌聚集之影響 55
5.2.3.藉由ThT螢光之量測與TEM觀察型態探討亞甲基藍對於雞蛋白溶菌酶纖維形成之影響 55
5.2.4.以圓二色光譜儀量測亞甲基藍對於雞蛋白溶菌酶二級結構之影響 58
5.2.5.透過ANS螢光分析亞甲基藍對於雞蛋白溶菌酶三級結構之影響 59
5.2.6.藉由碘化鉀螢光淬滅分析探討亞甲基藍對於雞蛋白溶菌酶可及性(solvent accessibility)之影響 60
5.2.7.探討亞甲基藍對於崩解(disaggregation)雞蛋白溶菌酶所形成之類澱粉纖維之能力 62
5.2.8.探討亞甲基藍抑制類澱粉纖維之可能機制 64
第六章 探討亮藍G對類澱粉纖維形成之影響 66
6.1.前言 66
6.2.結果與討論 68
6.2.1.藉由TEM 觀察亮藍G對於雞蛋白溶菌酶形成類澱粉纖維之影響 68
6.2.2.亮藍G之存在對於雞蛋白溶菌酶二級結構之影響 70
6.2.3.藉由ThT螢光之量測探討對於雞蛋白溶菌酶纖維形成之影響 71
6.2.4.透過ANS螢光分析亮藍G對於雞蛋白溶菌酶表面疏水結構之影響 75
6.2.5.透過同步螢光分析亮藍G對於雞蛋白溶菌酶三級結構之影響 76
6.2.6.亮藍G對於雞蛋白溶菌酶聚集之影響 78
6.2.7.亮藍G對於溶菌酶大小分布之影響 80
6.2.8.探討亮藍G抑制類澱粉纖維之可能機制 81
第七章 結論 83
第八章 未來展望 86
參考文獻 87
附錄 109
[1] C. Levinthal, "Are there pathways for protein folding?", J. Chim. Phys. 65 (1968) 44-45.
[2] M.S. Cheung, L.L. Chavez, J.N. Onuchic, "The energy landscape for protein folding and possible connections to function", Polymer 45(2) (2004) 547-555.
[3] C.M. Dobson, "Protein folding and misfolding", Nature 426(6968) (2003) 884.
[4] K. Markossian, B. Kurganov, "Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes", Biochemistry (Moscow) 69(9) (2004) 971-984.
[5] J.C. Young, V.R. Agashe, K. Siegers, F.U. Hartl, "Pathways of chaperone-mediated protein folding in the cytosol", Nature reviews Molecular cell biology 5(10) (2004) 781.
[6] M. Vendruscolo, E. Paci, M. Karplus, C.M. Dobson, "Structures and relative free energies of partially folded states of proteins", Proceedings of the National Academy of Sciences 100(25) (2003) 14817-14821.
[7] M.S. Cheung, A.E. García, J.N. Onuchic, "Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse", Proceedings of the National Academy of Sciences 99(2) (2002) 685-690.
[8] O.B. Ptitsyn, "Structures of folding intermediates", Current opinion in structural biology 5(1) (1995) 74-78.
[9] A. Naiyer, M.I. Hassan, A. Islam, M. Sundd, F. Ahmad, "Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques", Journal of Biomolecular Structure and Dynamics 33(10) (2015) 2267-2284.
[10] F. Chiti, C.M. Dobson, "Protein misfolding, functional amyloid, and human disease", Annu. Rev. Biochem. 75 (2006) 333-366.
[11] Z. Qin, D. Hu, M. Zhu, A.L. Fink, "Structural characterization of the partially folded intermediates of an immunoglobulin light chain leading to amyloid fibrillation and amorphous aggregation", Biochemistry 46(11) (2007) 3521-3531.
[12] M. Bartolini, V. Andrisano, "Strategies for the inhibition of protein aggregation in human diseases", ChemBioChem 11(8) (2010) 1018-1035.
[13] M. Stefani, "Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world", Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1739(1) (2004) 5-25.
[14] P. Mesquida, E.M. Blanco, R.A. McKendry, "Patterning amyloid peptide fibrils by AFM charge writing", Langmuir 22(22) (2006) 9089-9091.
[15] E.D.B. Clark, "Protein refolding for industrial processes", Current opinion in biotechnology 12(2) (2001) 202-207.
[16] S.M. Singh, A.K. Panda, "Solubilization and refolding of bacterial inclusion body proteins", Journal of bioscience and bioengineering 99(4) (2005) 303-310.
[17] W. Wang, "Protein aggregation and its inhibition in biopharmaceutics", International journal of pharmaceutics 289(1-2) (2005) 1-30.
[18] S.E. Bondos, "Methods for measuring protein aggregation", Current Analytical Chemistry 2(2) (2006) 157-170.
[19] A. Jungbauer, W. Kaar, "Current status of technical protein refolding", Journal of biotechnology 128(3) (2007) 587-596.
[20] S.S.-S. Wang, C.-K. Chang, H.-S. Liu, "Step change of mobile phase flow rates to enhance protein folding in size exclusion chromatography", Biochemical engineering journal 29(1-2) (2006) 2-11.
[21] V.N. Uversky, A.L. Fink, "Conformational constraints for amyloid fibrillation: the importance of being unfolded", Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1698(2) (2004) 131-153.
[22] M. Stefani, C.M. Dobson, "Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution", Journal of molecular medicine 81(11) (2003) 678-699.
[23] S.S.-S. Wang, Y.-T. Chen, P.-H. Chen, K.-N. Liu, "A kinetic study on the aggregation behavior of β-amyloid peptides in different initial solvent environments", Biochemical engineering journal 29(1-2) (2006) 129-138.
[24] C. Akkermans, P. Venema, S.S. Rogers, A.J. van der Goot, R.M. Boom, E. van der Linden, "Shear pulses nucleate fibril aggregation", Food Biophysics 1(3) (2006) 144-150.
[25] S. Kumar, J. Walter, "Phosphorylation of amyloid beta (Aβ) peptides–A trigger for formation of toxic aggregates in Alzheimer''s disease", Aging (Albany NY) 3(8) (2011) 803.
[26] S.S.-S. Wang, T.A. Good, "An Overview of Alzheimer", Journal of the Chinese Institute of Chemical Engineers 36(6) (2005) 533-559.
[27] S. Kikuchi, K. Shinpo, M. Takeuchi, S. Yamagishi, Z. Makita, N. Sasaki, K. Tashiro, "Glycation—a sweet tempter for neuronal death", Brain Research Reviews 41(2-3) (2003) 306-323.
[28] N.W. Seidler, G.S. Yeargans, T.G. Morgan, "Carnosine disaggregates glycated α-crystallin: an in vitro study", Archives of biochemistry and biophysics 427(1) (2004) 110-115.
[29] S.K. Srivastava, K.V. Ramana, A. Bhatnagar, "Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options", Endocrine reviews 26(3) (2005) 380-392.
[30] O.S. Makin, L.C. Serpell, "Structures for amyloid fibrils", The FEBS journal 272(23) (2005) 5950-5961.
[31] R. Khurana, J.R. Gillespie, A. Talapatra, L.J. Minert, C. Ionescu-Zanetti, I. Millett, A.L. Fink, "Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates", Biochemistry 40(12) (2001) 3525-3535.
[32] C.M. Dobson, Principles of protein folding, misfolding and aggregation, Seminars in cell & developmental biology, Elsevier, 2004, pp. 3-16.
[33] M.R. Nilsson, "Techniques to study amyloid fibril formation in vitro", Methods 34(1) (2004) 151-160.
[34] M. Bucciantini, G. Calloni, F. Chiti, L. Formigli, D. Nosi, C.M. Dobson, M. Stefani, "Pre-fibrillar amyloid protein aggregates share common features of cytotoxicity", Journal of Biological Chemistry (2004).
[35] M. Verma, A. Vats, V. Taneja, "Toxic species in amyloid disorders: Oligomers or mature fibrils", Annals of Indian Academy of Neurology 18(2) (2015) 138.
[36] A.K. Paravastu, R.D. Leapman, W.-M. Yau, R. Tycko, "Molecular structural basis for polymorphism in Alzheimer''s β-amyloid fibrils", Proceedings of the National Academy of Sciences 105(47) (2008) 18349-18354.
[37] M.P. Lambert, A. Barlow, B.A. Chromy, C. Edwards, R. Freed, M. Liosatos, T. Morgan, I. Rozovsky, B. Trommer, K.L. Viola, "Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins", Proceedings of the National Academy of Sciences 95(11) (1998) 6448-6453.
[38] K. Powell, P.L. Zeitlin, "Therapeutic approaches to repair defects in ΔF508 CFTR folding and cellular targeting", Advanced drug delivery reviews 54(11) (2002) 1395-1408.
[39] R.W. Carrell, D.A. Lomas, "Alpha1-antitrypsin deficiency—a model for conformational diseases", New England Journal of Medicine 346(1) (2002) 45-53.
[40] J.W. Kelly, "Alternative conformations of amyloidogenic proteins govern their behavior", Current opinion in structural biology 6(1) (1996) 11-17.
[41] P.T. Lansbury, "Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease", Proceedings of the National Academy of Sciences 96(7) (1999) 3342-3344.
[42] J.W. Kelly, "The environmental dependency of protein folding best explains prion and amyloid diseases", Proceedings of the National Academy of Sciences 95(3) (1998) 930-932.
[43] J.W. Kelly, "The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways", Current opinion in structural biology 8(1) (1998) 101-106.
[44] C. Soto, "Alzheimer’s and prion disease as disorders of protein conformation: implications for the design of novel therapeutic approaches", Journal of Molecular Medicine 77(5) (1999) 412-418.
[45] R.W. Carrell, D.A. Lomas, "Conformational disease", The Lancet 350(9071) (1997) 134-138.
[46] G. Taubes, "Protein chemistry: Misfolding the way to disease", Science 271(5255) (1996) 1493-1495.
[47] E. Frare, P.P. de Laureto, J. Zurdo, C.M. Dobson, A. Fontana, "A highly amyloidogenic region of hen lysozyme", Journal of molecular biology 340(5) (2004) 1153-1165.
[48] V.A. Proctor, F. Cunningham, D.Y. Fung, "The chemistry of lysozyme and its use as a food preservative and a pharmaceutical", Critical Reviews in Food Science & Nutrition 26(4) (1988) 359-395.
[49] B.A. Vernaglia, J. Huang, E.D. Clark, "Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme", Biomacromolecules 5(4) (2004) 1362-1370.
[50] S. Goda, K. Takano, Y. Yamagata, R. Nagata, H. Akutsu, S. Maki, K. Namba, K. Yutani, "Amyloid protofilament formation of hen egg lysozyme in highly concentrated ethanol solution", Protein Science 9(2) (2000) 369-375.
[51] M.R. Krebs, D.K. Wilkins, E.W. Chung, M.C. Pitkeathly, A.K. Chamberlain, J. Zurdo, C.V. Robinson, C.M. Dobson, "Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain 1", Journal of molecular biology 300(3) (2000) 541-549.
[52] L.A. Morozova-Roche, J. Zurdo, A. Spencer, W. Noppe, V. Receveur, D.B. Archer, M. Joniau, C.M. Dobson, "Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants", Journal of structural biology 130(2-3) (2000) 339-351.
[53] S. Fujiwara, F. Matsumoto, Y. Yonezawa, "Effects of salt concentration on association of the amyloid protofilaments of hen egg white lysozyme studied by time-resolved neutron scattering", Journal of molecular biology 331(1) (2003) 21-28.
[54] M. Ramírez-Alvarado, J.S. Merkel, L. Regan, "A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro", Proceedings of the National Academy of Sciences 97(16) (2000) 8979-8984.
[55] S. Tanaka, Y. Oda, M. Ataka, K. Onuma, S. Fujiwara, Y. Yonezawa, "Denaturation and aggregation of hen egg lysozyme in aqueous ethanol solution studied by dynamic light scattering", Biopolymers: Original Research on Biomolecules 59(5) (2001) 370-379.
[56] R. Swaminathan, V.K. Ravi, S. Kumar, M.V.S. Kumar, N. Chandra, "Lysozyme: a model protein for amyloid research", Advances in protein chemistry and structural biology, Elsevier2011, pp. 63-111.
[57] S.-C. How, W.-T. Hsu, C.-P. Tseng, C.-H. Lo, W.-L. Chou, S.S.-S. Wang, "Brilliant blue R dye is capable of suppressing amyloid fibril formation of lysozyme", Journal of Biomolecular Structure and Dynamics (2017) 1-14.
[58] C.-T. Kuo, Y.-L. Chen, W.-T. Hsu, S.-C. How, Y.-H. Cheng, S.-S. Hsueh, H.-S. Liu, T.-H. Lin, J.W. Wu, S.S.-S. Wang, "Investigating the effects of erythrosine B on amyloid fibril formation derived from lysozyme", International journal of biological macromolecules 98 (2017) 159-168.
[59] V. Yeh, J.M. Broering, A. Romanyuk, B. Chen, Y.O. Chernoff, A.S. Bommarius, "The Hofmeister effect on amyloid formation using yeast prion protein", Protein Science 19(1) (2010) 47-56.
[60] L.A. Sikkink, M. Ramirez-Alvarado, "Salts enhance both protein stability and amyloid formation of an immunoglobulin light chain", Biophysical chemistry 135(1-3) (2008) 25-31.
[61] S.J. Wood, L. MacKenzie, B. Maleeff, M.R. Hurle, R. Wetzel, "Selective inhibition of A fibril formation", Journal of Biological Chemistry 271(8) (1996) 4086-4092.
[62] A. Lomakin, D.S. Chung, G.B. Benedek, D.A. Kirschner, D.B. Teplow, "On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants", Proceedings of the National Academy of Sciences 93(3) (1996) 1125-1129.
[63] E. Gur, D. Biran, E. Gazit, E.Z. Ron, "In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures", Molecular microbiology 46(5) (2002) 1391-1397.
[64] S. Feng, Y.B. Yan, "Effects of glycerol on the compaction and stability of the wild type and mutated rabbit muscle creatine kinase", Proteins: Structure, Function, and Bioinformatics 71(2) (2008) 844-854.
[65] D. Barreca, G. Laganà, S. Ficarra, E. Tellone, U. Leuzzi, S. Magazù, A. Galtieri, E. Bellocco, "Anti-aggregation properties of trehalose on heat-induced secondary structure and conformation changes of bovine serum albumin", Biophysical chemistry 147(3) (2010) 146-152.
[66] A. Nayak, C.C. Lee, G.J. McRae, G. Belfort, "Osmolyte controlled fibrillation kinetics of insulin: New insight into fibrillation using the preferential exclusion principle", Biotechnology progress 25(5) (2009) 1508-1514.
[67] Y.-S. Kim, S.P. Cape, E. Chi, R. Raffen, P. Wilkins-Stevens, F.J. Stevens, M.C. Manning, T.W. Randolph, A. Solomon, J.F. Carpenter, "Counteracting effects of renal solutes on amyloid fibril formation by immunoglobulin light chains", Journal of Biological Chemistry 276(2) (2001) 1626-1633.
[68] B.S. Kendrick, J.L. Cleland, X. Lam, T. Nguyen, T.W. Randolph, M.C. Manning, J.F. Carpenter, "Aggregation of recombinant human interferon gamma: Kinetics and structural transitions", Journal of pharmaceutical sciences 87(9) (1998) 1069-1076.
[69] D. Roccatano, G. Colombo, M. Fioroni, A.E. Mark, "Mechanism by which 2, 2, 2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study", Proceedings of the National Academy of Sciences 99(19) (2002) 12179-12184.
[70] X.-Y. Wang, F.-G. Meng, H.-M. Zhou, "Inactivation and conformational changes of creatine kinase at low concentrations of hexafluoroisopropanol solutions", Biochemistry and cell biology 81(5) (2003) 327-333.
[71] A.W. Sonesson, H. Blom, K. Hassler, U.M. Elofsson, T.H. Callisen, J. Widengren, H. Brismar, "Protein–surfactant interactions at hydrophobic interfaces studied with total internal reflection fluorescence correlation spectroscopy (TIR-FCS)", Journal of colloid and interface science 317(2) (2008) 449-457.
[72] D.K. Chou, R. Krishnamurthy, T.W. Randolph, J.F. Carpenter, M.C. Manning, "Effects of Tween 20® and Tween 80® on the stability of Albutropin during agitation", Journal of pharmaceutical sciences 94(6) (2005) 1368-1381.
[73] M.F. Ahmad, T. Ramakrishna, B. Raman, C.M. Rao, "Fibrillogenic and non-fibrillogenic ensembles of SDS-bound human α-synuclein", Journal of molecular biology 364(5) (2006) 1061-1072.
[74] S.-J. Lin, Y.-J. Shiao, C.-W. Chi, L.-M. Yang, "Aβ Aggregation inhibitors. Part 1: Synthesis and biological activity of phenylazo benzenesulfonamides", Bioorganic & medicinal chemistry letters 14(5) (2004) 1173-1176.
[75] K.J. Marcinowski, H. Shao, E.L. Clancy, M.G. Zagorski, "Solution Structure Model of Residues 1− 28 of the Amyloid β-Peptide When Bound to Micelles", Journal of the American Chemical Society 120(43) (1998) 11082-11091.
[76] A.K. Moren, A. Khan, "Phase equilibria of an anionic surfactant (sodium dodecyl sulfate) and an oppositely charged protein (lysozyme) in water", Langmuir 11(10) (1995) 3636-3643.
[77] V. Rangachari, D.K. Reed, B.D. Moore, T.L. Rosenberry, "Secondary structure and interfacial aggregation of amyloid-β (1− 40) on sodium dodecyl sulfate micelles", Biochemistry 45(28) (2006) 8639-8648.
[78] D.E. Otzen, L.W. Nesgaard, K.K. Andersen, J.H. Hansen, G. Christiansen, H. Doe, P. Sehgal, "Aggregation of S6 in a quasi-native state by sub-micellar SDS", Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1784(2) (2008) 400-414.
[79] L. Giehm, C.L.P. Oliveira, G. Christiansen, J.S. Pedersen, D.E. Otzen, "SDS-induced fibrillation of α-synuclein: an alternative fibrillation pathway", Journal of molecular biology 401(1) (2010) 115-133.
[80] T.A. Pertinhez, M. Bouchard, E.J. Tomlinson, R. Wain, S.J. Ferguson, C.M. Dobson, L.J. Smith, "Amyloid fibril formation by a helical cytochrome", FEBS letters 495(3) (2001) 184-186.
[81] Y. Li, M. Cao, Y. Wang, "Alzheimer Amyloid β (1− 40) Peptide: Interactions with Cationic Gemini and Single-Chain Surfactants", The Journal of Physical Chemistry B 110(36) (2006) 18040-18045.
[82] S.L. Myers, S. Jones, T.R. Jahn, I.J. Morten, G.A. Tennent, E.W. Hewitt, S.E. Radford, "A systematic study of the effect of physiological factors on β2-microglobulin amyloid formation at neutral pH", Biochemistry 45(7) (2006) 2311-2321.
[83] M. Zhu, A.L. Fink, "Lipid binding inhibits alpha-synuclein fibril formation", Journal of Biological Chemistry (2003).
[84] A.A. Moosavi-Movahedi, P. Pirzadeh, S. Hashemnia, S. Ahmadian, B. Hemmateenejad, M. Amani, A. Saboury, F. Ahmad, M. Shamsipur, G. Hakimelahi, "Fibril formation of lysozyme upon interaction with sodium dodecyl sulfate at pH 9.2", Colloids and Surfaces B: Biointerfaces 60(1) (2007) 55-61.
[85] R. Sabaté, J. Estelrich, "Stimulatory and inhibitory effects of alkyl bromide surfactants on β-amyloid fibrillogenesis", Langmuir 21(15) (2005) 6944-6949.
[86] N. Sureshbabu, R. Kirubagaran, R. Jayakumar, "Surfactant-induced conformational transition of amyloid β-peptide", European Biophysics Journal 38(4) (2009) 355.
[87] S. Yamamoto, J.J. Kazama, I. Narita, H. Naiki, F. Gejyo, "Recent progress in understanding dialysis-related amyloidosis", Bone 45 (2009) S39-S42.
[88] I. Sadler, D.W. Smith, M.S. Shearman, C.I. Ragan, V.J. Tailor, S.J. Pollack, "Sulphated compounds attenuate beta-amyloid toxicity by inhibiting its association with cells", Neuroreport 7(1) (1995) 49-53.
[89] A. Lorenzo, B.A. Yankner, "Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red", Proceedings of the National Academy of Sciences 91(25) (1994) 12243-12247.
[90] S.J. Pollack, I.I. Sadler, S.R. Hawtin, V.J. Tailor, M.S. Shearman, "Sulfated glycosaminoglycans and dyes attenuate the neurotoxic effects of β-amyloid in rat PC12 cells", Neuroscience letters 184(2) (1995) 113-116.
[91] C. Hetényi, Z. Szabó, É. Klement, Z. Datki, T. Körtvélyesi, M. Zarándi, B. Penke, "Pentapeptide amides interfere with the aggregation of β-amyloid peptide of Alzheimer''s disease", Biochemical and biophysical research communications 292(4) (2002) 931-936.
[92] M.M. Pallitto, J. Ghanta, P. Heinzelman, L.L. Kiessling, R.M. Murphy, "Recognition sequence design for peptidyl modulators of β-amyloid aggregation and toxicity", Biochemistry 38(12) (1999) 3570-3578.
[93] C. Soto, E.M. Sigurdsson, L. Morelli, R.A. Kumar, E.M. Castaño, B. Frangione, "β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer''s therapy", Nature medicine 4(7) (1998) 822-826.
[94] Z. Datki, R. Papp, D. Zádori, K. Soós, L. Fülöp, A. Juhász, G. Laskay, C. Hetényi, E. Mihalik, M. Zarándi, "In vitro model of neurotoxicity of Aβ 1–42 and neuroprotection by a pentapeptide: irreversible events during the first hour", Neurobiology of disease 17(3) (2004) 507-515.
[95] P. Santhoshkumar, K.K. Sharma, "Inhibition of amyloid fibrillogenesis and toxicity by a peptide chaperone", Molecular and cellular biochemistry 267(1-2) (2004) 147-155.
[96] S. Lee, K. Carson, A. Rice‐Ficht, T. Good, "Hsp20, a novel α‐crystallin, prevents Aβ fibril formation and toxicity", Protein Science 14(3) (2005) 593-601.
[97] Z. Gazova, A. Bellova, Z. Daxnerova, J. Imrich, P. Kristian, J. Tomascikova, J. Bagelova, D. Fedunova, M. Antalik, "Acridine derivatives inhibit lysozyme aggregation", European biophysics journal 37(7) (2008) 1261-1270.
[98] F.G. De Felice, J.-C. Houzel, J. Garcia-Abreu, P.R.F. Louzada Jr, R.C. Afonso, M.N.L. Meirelles, R. Lent, V.M. Neto, S.T. Ferreira, "Inhibition of Alzheimer’s disease β-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: implications for Alzheimer’s therapy", The FASEB Journal 15(7) (2001) 1297-1299.
[99] M.N. Vieira, J.D. Figueroa-Villar, M.N.L. Meirelles, S.T. Ferreira, F.G. De Felice, "Small molecule inhibitors of lysozyme amyloid aggregation", Cell biochemistry and biophysics 44(3) (2006) 549-553.
[100] S.A. Priola, A. Raines, W.S. Caughey, "Porphyrin and phthalocyanine antiscrapie compounds", Science 287(5457) (2000) 1503-1506.
[101] B.C. May, A.T. Fafarman, S.B. Hong, M. Rogers, L.W. Deady, S.B. Prusiner, F.E. Cohen, "Potent inhibition of scrapie prion replication in cultured cells by bis-acridines", Proceedings of the National Academy of Sciences 100(6) (2003) 3416-3421.
[102] I. Khlistunova, J. Biernat, Y. Wang, M. Pickhardt, M. von Bergen, Z. Gazova, E. Mandelkow, E.-M. Mandelkow, "Inducible expression of Tau repeat domain in cell models of tauopathy aggregation is toxic to cells but can be reversed by inhibitor drugs", Journal of Biological Chemistry 281(2) (2006) 1205-1214.
[103] S. Taniguchi, N. Suzuki, M. Masuda, S.-i. Hisanaga, T. Iwatsubo, M. Goedert, M. Hasegawa, "Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins", Journal of Biological Chemistry 280(9) (2005) 7614-7623.
[104] Y. Porat, A. Abramowitz, E. Gazit, "Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism", Chemical biology & drug design 67(1) (2006) 27-37.
[105] D.R. Howlett, A.E. Perry, F. Godfrey, J.E. Swatton, K.H. JENNINGS, C. SPITZFADEN, H. WADSWORTH, R.E. MARKWELL, "Inhibition of fibril formation in β-amyloid peptide by a novel series of benzofurans", Biochemical Journal 340(1) (1999) 283-289.
[106] W.E. Klunk, M.L. Debnath, A.M. Koros, J.W. Pettegrew, "Chrysamine-G, a lipophilic analogue of Congo red, inhibits Aβ-induced toxicity in PC12 cells", Life sciences 63(20) (1998) 1807-1814.
[107] T. TOMIYAMA, H. KANEKO, K.-i. KATAOKA, S. ASANO, E. Noriaki, "Rifampicin inhibits the toxicity of pre-aggregated amyloid peptides by binding to peptide fibrils and preventing amyloid-cell interaction", Biochemical Journal 322(3) (1997) 859-865.
[108] T. Tomiyama, A. Shoji, K.-i. Kataoka, Y. Suwa, S. Asano, H. Kaneko, N. Endo, "Inhibition of amyloid protein aggregation and neurotoxicity by rifampicin its possible function as a hydroxyl radical scavenger", Journal of Biological Chemistry 271(12) (1996) 6839-6844.
[109] C. Korth, B.C. May, F.E. Cohen, S.B. Prusiner, "Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease", Proceedings of the National Academy of Sciences 98(17) (2001) 9836-9841.
[110] L. Estrada, C. Soto, "Disrupting β-amyloid aggregation for Alzheimer disease treatment", Current topics in medicinal chemistry 7(1) (2007) 115-126.
[111] R. Liu, H. Barkhordarian, S. Emadi, C.B. Park, M.R. Sierks, "Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42", Neurobiology of disease 20(1) (2005) 74-81.
[112] F.G. De Felice, M.N. Vieira, L.M. Saraiva, J.D. Figueroa-Villar, J. Garcia-Abreu, R. Liu, L. Chang, W.L. Klein, S.T. Ferreira, "Targeting the neurotoxic species in Alzheimer’s disease: inhibitors of Aβ oligomerization", The FASEB Journal 18(12) (2004) 1366-1372.
[113] K. Ono, Y. Yoshiike, A. Takashima, K. Hasegawa, H. Naiki, M. Yamada, "Potent anti‐amyloidogenic and fibril‐destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer''s disease", Journal of neurochemistry 87(1) (2003) 172-181.
[114] M. Remy, S. Thaler, R.G. Schumann, C. May, M. Fiedorowicz, F. Schuettauf, M. Grüterich, S.G. Priglinger, M.M. Nentwich, A. Kampik, "An in vivo evaluation of Brilliant Blue G in animals and humans", British Journal of Ophthalmology 92(8) (2008) 1142-1147.
[115] W. Peng, M.L. Cotrina, X. Han, H. Yu, L. Bekar, L. Blum, T. Takano, G.-F. Tian, S.A. Goldman, M. Nedergaard, "Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury", Proceedings of the National Academy of Sciences 106(30) (2009) 12489-12493.
[116] H.E. Wong, W. Qi, H.-M. Choi, E.J. Fernandez, I. Kwon, "A safe, blood-brain barrier permeable triphenylmethane dye inhibits amyloid-β neurotoxicity by generating nontoxic aggregates", ACS chemical neuroscience 2(11) (2011) 645-657.
[117] J.A. Irwin, H.E. Wong, I. Kwon, "Different fates of Alzheimer’s disease amyloid-β fibrils remodeled by biocompatible small molecules", Biomacromolecules 14(1) (2012) 264-274.
[118] X. Chen, J. Hu, L. Jiang, S. Xu, B. Zheng, C. Wang, J. Zhang, X. Wei, L. Chang, Q. Wang, "Brilliant Blue G improves cognition in an animal model of Alzheimer’s disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons", Neuroscience 279 (2014) 94-101.
[119] J. A Irwin, A. Erisir, I. Kwon, "Oral triphenylmethane food dye analog, brilliant blue G, prevents neuronal loss in APPSwDI/NOS2-/-mouse model", Current Alzheimer Research 13(6) (2016) 663-677.
[120] F. Meng, D.P. Raleigh, "Inhibition of glycosaminoglycan-mediated amyloid formation by islet amyloid polypeptide and proIAPP processing intermediates", Journal of molecular biology 406(3) (2011) 491-502.
[121] J.P. Tardivo, A. Del Giglio, C.S. de Oliveira, D.S. Gabrielli, H.C. Junqueira, D.B. Tada, D. Severino, R. de Fátima Turchiello, M.S. Baptista, "Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications", Photodiagnosis and photodynamic therapy 2(3) (2005) 175-191.
[122] A. Crowe, M.J. James, V.M. Lee, A.B. Smith, J.Q. Trojanowski, C. Ballatore, K.R. Brunden, "Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation", Journal of Biological Chemistry (2013) jbc. M112. 436006.
[123] A.R.A. Ladiwala, J.S. Dordick, P.M. Tessier, "Aromatic small molecules remodel toxic soluble oligomers of amyloid β through three independent pathways", Journal of Biological Chemistry 286(5) (2011) 3209-3218.
[124] M. Necula, L. Breydo, S. Milton, R. Kayed, W.E. van der Veer, P. Tone, C.G. Glabe, "Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization", Biochemistry 46(30) (2007) 8850-8860.
[125] M.K. Jana, R. Cappai, G.D. Ciccotosto, "Oligomeric Amyloid-β Toxicity Can Be Inhibited by Blocking Its Cellular Binding in Cortical Neuronal Cultures with Addition of the Triphenylmethane Dye Brilliant Blue G", ACS chemical neuroscience 7(8) (2016) 1141-1147.
[126] B. Brumshtein, S.R. Esswein, L. Salwinski, M.L. Phillips, A.T. Ly, D. Cascio, M.R. Sawaya, D.S. Eisenberg, "Inhibition by small-molecule ligands of formation of amyloid fibrils of an immunoglobulin light chain variable domain", Elife 4 (2015) e10935.
[127] P. Cavaliere, J. Torrent, S. Prigent, V. Granata, K. Pauwels, A. Pastore, H. Rezaei, A. Zagari, "Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein", Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1832(1) (2013) 20-28.
[128] E.M. Sontag, G.P. Lotz, N. Agrawal, A. Tran, R. Aron, G. Yang, M. Necula, A. Lau, S. Finkbeiner, C. Glabe, "Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington''s disease models", Journal of Neuroscience 32(32) (2012) 11109-11119.
[129] F.G. Defelice, S.T. Ferreira, "Physiopathological modulators of amyloid aggregation and novel pharmacological approaches in Alzheimer''s disease", Anais da Academia Brasileira de Ciências 74(2) (2002) 265-284.
[130] R. Bhopal, J. Rankin, E. McColl, L. Thomas, E. Kaner, R. Stacy, P. Pearson, B. Vernon, H. Rodgers, "The vexed question of authorship: views of researchers in a British medical faculty", Bmj 314(7086) (1997) 1009.
[131] M. Biancalana, S. Koide, "Molecular mechanism of Thioflavin-T binding to amyloid fibrils", Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1804(7) (2010) 1405-1412.
[132] J. Longworth, "Intrinsic fluorescence of proteins", Time-resolved fluorescence spectroscopy in biochemistry and biology, Springer1983, pp. 651-725.
[133] M.R. Eftink, "Fluorescence techniques for studying protein structure", Methods of biochemical analysis (1991) 127-205.
[134] M.E. Pacheco, L. Bruzzone, "Synchronous fluorescence spectrometry: Conformational investigation or inner filter effect?", Journal of Luminescence 137 (2013) 138-142.
[135] S. Phillips, L. Wilson, R. Borkman, "Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins", Current eye research 5(8) (1986) 611-620.
[136] C.-P. Liu, Z.-Y. Li, G.-C. Huang, S. Perrett, J.-M. Zhou, "Two distinct intermediates of trigger factor are populated during guanidine denaturation", Biochimie 87(11) (2005) 1023-1031.
[137] A.L. Smoot, M. Panda, B.T. Brazil, A.M. Buckle, A.R. Fersht, P.M. Horowitz, "The binding of bis-ANS to the isolated GroEL apical domain fragment induces the formation of a folding intermediate with increased hydrophobic surface not observed in tetradecameric GroEL", Biochemistry 40(14) (2001) 4484-4492.
[138] M.K. Siddiqi, Y.E. Shahein, N. Hussein, R.H. Khan, "Effect of surfactants on Ra-sHSPI–A small heat shock protein from the cattle tick Rhipicephalus annulatus", Journal of Molecular Structure 1119 (2016) 12-17.
[139] P. Alam, M.K. Siddiqi, S.K. Chaturvedi, M. Zaman, R.H. Khan, "Vitamin B12 offers neuronal cell protection by inhibiting Aβ-42 amyloid fibrillation", International journal of biological macromolecules 99 (2017) 477-482.
[140] M.K. Siddiqi, P. Alam, S.K. Chaturvedi, R.H. Khan, "Anti-amyloidogenic behavior and interaction of diallylsulfide with human serum albumin", International journal of biological macromolecules 92 (2016) 1220-1228.
[141] P.S. Vassar, C. Culling, "Fluorescent stains, with special reference to amyloid and connective tissues", Archives of pathology 68 (1959) 487-498.
[142] D. Patra, A. Mishra, "Recent developments in multi-component synchronous fluorescence scan analysis", TrAC Trends in Analytical Chemistry 21(12) (2002) 787-798.
[143] J.P. Taylor, J. Hardy, K.H. Fischbeck, "Toxic proteins in neurodegenerative disease", Science 296(5575) (2002) 1991-1995.
[144] M. Pepys, "Pathogenesis, diagnosis and treatment of systemic amyloidosis", Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356(1406) (2001) 203-211.
[145] M. Sunde, C. Blake, "The structure of amyloid fibrils by electron microscopy and X-ray diffraction", Advances in protein chemistry, Elsevier1997, pp. 123-159.
[146] R. Nelson, D. Eisenberg, "Structural models of amyloid‐like fibrils", Advances in protein chemistry 73 (2006) 235-282.
[147] O. Makin, L. Serpell, Examining the structure of the mature amyloid fibril, Portland Press Limited, 2002.
[148] N. Ferguson, J. Becker, H. Tidow, S. Tremmel, T.D. Sharpe, G. Krause, J. Flinders, M. Petrovich, J. Berriman, H. Oschkinat, "General structural motifs of amyloid protofilaments", Proceedings of the National Academy of Sciences 103(44) (2006) 16248-16253.
[149] A.K. Chamberlain, C.E. MacPhee, J. Zurdo, L.A. Morozova-Roche, H.A.O. Hill, C.M. Dobson, J.J. Davis, "Ultrastructural organization of amyloid fibrils byatomic force microscopy", Biophysical journal 79(6) (2000) 3282-3293.
[150] C.M. Dobson, "The structural basis of protein folding and its links with human disease", Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356(1406) (2001) 133-145.
[151] T. Cohen, A. Frydman-Marom, M. Rechter, E. Gazit, "Inhibition of amyloid fibril formation and cytotoxicity by hydroxyindole derivatives", Biochemistry 45(15) (2006) 4727-4735.
[152] S.-H. Wang, X.-Y. Dong, Y. Sun, "Effect of (−)-epigallocatechin-3-gallate on human insulin fibrillation/aggregation kinetics", Biochemical engineering journal 63 (2012) 38-49.
[153] S.S.-S. Wang, P.-H. Chen, Y.-T. Hung, "Effects of p-benzoquinone and melatonin on amyloid fibrillogenesis of hen egg-white lysozyme", Journal of Molecular Catalysis B: Enzymatic 43(1-4) (2006) 49-57.
[154] J. Li, M. Zhu, S. Rajamani, V.N. Uversky, A.L. Fink, "Rifampicin inhibits α-synuclein fibrillation and disaggregates fibrils", Chemistry & biology 11(11) (2004) 1513-1521.
[155] I. Cardoso, M. Saraiva, "Doxycycline disrupts transthyretin amyloid: evidence from studies in a FAP transgenic mice model", The FASEB Journal 20(2) (2006) 234-239.
[156] G. Soldi, G. Plakoutsi, N. Taddei, F. Chiti, "Stabilization of a native protein mediated by ligand binding inhibits amyloid formation independently of the aggregation pathway", Journal of medicinal chemistry 49(20) (2006) 6057-6064.
[157] K. Ono, M. Yamada, "Antioxidant compounds have potent anti‐fibrillogenic and fibril‐destabilizing effects for α‐synuclein fibrils in vitro", Journal of neurochemistry 97(1) (2006) 105-115.
[158] F. Chiti, N. Taddei, M. Stefani, C.M. Dobson, G. Ramponi, "Reduction of the amyloidogenicity of a protein by specific binding of ligands to the native conformation", Protein Science 10(4) (2001) 879-886.
[159] R. Mishra, K. Sörgjerd, S. Nyström, A. Nordigården, Y.-C. Yu, P. Hammarström, "Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion", Journal of molecular biology 366(3) (2007) 1029-1044.
[160] S.S.-S. Wang, Y.-T. Chen, S.-W. Chou, "Inhibition of amyloid fibril formation of β-amyloid peptides via the amphiphilic surfactants", Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1741(3) (2005) 307-313.
[161] S.-Y. Ow, D.E. Dunstan, "The effect of concentration, temperature and stirring on hen egg white lysozyme amyloid formation", Soft Matter 9(40) (2013) 9692-9701.
[162] J. Wawer, J. Krakowiak, M. Szociński, Z. Lustig, M. Olszewski, K. Szostak, "Inhibition of amyloid fibril formation of hen egg white lysozyme by trimethylamine N-oxide at low pH", International journal of biological macromolecules 70 (2014) 214-221.
[163] Y. Zou, W. Hao, H. Li, Y. Gao, Y. Sun, G. Ma, "New insight into amyloid fibril formation of hen egg white lysozyme using a two-step temperature-dependent FTIR approach", The Journal of Physical Chemistry B 118(33) (2014) 9834-9843.
[164] S.S.-S. Wang, K.-N. Liu, C.-H. Wu, J.-K. Lai, "Investigating the influences of redox buffer compositions on the amyloid fibrillogenesis of hen egg-white lysozyme", Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1794(11) (2009) 1663-1672.
[165] V.H. Lieu, J.W. Wu, S.S.S. Wang, C.H. Wu, "Inhibition of amyloid fibrillization of hen egg‐white lysozymes by rifampicin and p‐benzoquinone", Biotechnology progress 23(3) (2007) 698-706.
[166] S.S.-S. Wang, Y.-T. Hung, W.-S. Wen, K.-C. Lin, G.-Y. Chen, "Exploring the inhibitory activity of short-chain phospholipids against amyloid fibrillogenesis of hen egg-white lysozyme", Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1811(5) (2011) 301-313.
[167] S.S.-S. Wang, K.-N. Liu, B.-W. Wang, "Effects of dithiothreitol on the amyloid fibrillogenesis of hen egg-white lysozyme", European Biophysics Journal 39(8) (2010) 1229-1242.
[168] J.W. Wu, K.-N. Liu, S.-C. How, W.-A. Chen, C.-M. Lai, H.-S. Liu, C.-J. Hu, S.S.-S. Wang, "Carnosine''s effect on amyloid fibril formation and induced cytotoxicity of lysozyme", PloS one 8(12) (2013) e81982.
[169] M.H. Viet, K. Siposova, Z. Bednarikova, A. Antosova, T.T. Nguyen, Z. Gazova, M.S. Li, "In silico and in vitro study of binding affinity of tripeptides to amyloid β fibrils: implications for Alzheimer’s disease", The Journal of Physical Chemistry B 119(16) (2015) 5145-5155.
[170] T. Šneideris, L. Baranauskienė, J.G. Cannon, R. Rutkienė, R. Meškys, V. Smirnovas, "Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives", PeerJ 3 (2015) e1271.
[171] A.J. Doig, P. Derreumaux, "Inhibition of protein aggregation and amyloid formation by small molecules", Current opinion in structural biology 30 (2015) 50-56.
[172] F. Mohammadi, A. Mahmudian, M. Moeeni, L. Hassani, "Inhibition of amyloid fibrillation of hen egg-white lysozyme by the natural and synthetic curcuminoids", RSC Advances 6(28) (2016) 23148-23160.
[173] K.-N. Liu, C.-M. Lai, Y.-T. Lee, S.-N. Wang, R.P.-Y. Chen, J.-S. Jan, H.-S. Liu, S.S.-S. Wang, "Curcumin''s pre-incubation temperature affects its inhibitory potency toward amyloid fibrillation and fibril-induced cytotoxicity of lysozyme", Biochimica et Biophysica Acta (BBA)-General Subjects 1820(11) (2012) 1774-1786.
[174] S.S.-S. Wang, K.-N. Liu, W.-H. Lee, "Effect of curcumin on the amyloid fibrillogenesis of hen egg-white lysozyme", Biophysical chemistry 144(1-2) (2009) 78-87.
[175] M. Ghobeh, S. Ahmadian, A.A. Meratan, A. Ebrahim‐Habibi, A. Ghasemi, M. Shafizadeh, M. Nemat‐Gorgani, "Interaction of Aβ (25–35) fibrillation products with mitochondria: Effect of small‐molecule natural products", Peptide Science 102(6) (2014) 473-486.
[176] Q.V. Vuong, K. Siposova, T.T. Nguyen, A. Antosova, L. Balogova, L. Drajna, J. Imrich, M.S. Li, Z. Gazova, "Binding of glyco-acridine derivatives to lysozyme leads to inhibition of amyloid fibrillization", Biomacromolecules 14(4) (2013) 1035-1043.
[177] R. Malisauskas, A. Botyriute, J.G. Cannon, V. Smirnovas, "Flavone derivatives as inhibitors of insulin amyloid-like fibril formation", PloS one 10(3) (2015) e0121231.
[178] D.B. Trivella, C.V. dos Reis, L.M.T. Lima, D. Foguel, I. Polikarpov, "Flavonoid interactions with human transthyretin: combined structural and thermodynamic analysis", Journal of structural biology 180(1) (2012) 143-153.
[179] H. Noor, P. Cao, D.P. Raleigh, "Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers", Protein Science 21(3) (2012) 373-382.
[180] L.M. Young, J.C. Saunders, R.A. Mahood, C.H. Revill, R.J. Foster, L.-H. Tu, D.P. Raleigh, S.E. Radford, A.E. Ashcroft, "Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry–mass spectrometry", Nature chemistry 7(1) (2015) 73.
[181] Y.F. Li, C.Z. Huang, M. Li, "A resonance light-scattering determination of proteins with fast green FCF", Analytical sciences 18(2) (2002) 177-181.
[182] K. Ono, K. Hasegawa, H. Naiki, M. Yamada, "Curcumin has potent anti‐amyloidogenic effects for Alzheimer''s β‐amyloid fibrils in vitro", Journal of neuroscience research 75(6) (2004) 742-750.
[183] P. Alam, K. Siddiqi, S.K. Chturvedi, R.H. Khan, "Protein aggregation: from background to inhibition strategies", International journal of biological macromolecules 103 (2017) 208-219.
[184] M.K. Siddiqi, P. Alam, S.K. Chaturvedi, Y.E. Shahein, R.H. Khan, "Mechanisms of protein aggregation and inhibition", Front. Biosci.(Elite Ed.) 9 (2017) 1-20.
[185] M.K. Siddiqi, P. Alam, S.K. Chaturvedi, M.V. Khan, S. Nusrat, S. Malik, R.H. Khan, "Capreomycin inhibits the initiation of amyloid fibrillation and suppresses amyloid induced cell toxicity", Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1866(4) (2018) 549-557.
[186] M.K. Siddiqi, P. Alam, S.K. Chaturvedi, S. Nusrat, Y.E. Shahein, R.H. Khan, "Attenuation of amyloid fibrillation in presence of Warfarin: a biophysical investigation", International journal of biological macromolecules 95 (2017) 713-718.
[187] S.S.S. Wang, J.W. Wu, S. Yamamoto, H.S. Liu, "Diseases of protein aggregation and the hunt for potential pharmacological agents", Biotechnology Journal: Healthcare Nutrition Technology 3(2) (2008) 165-192.
[188] D.A. Kirschner, C. Abraham, D.J. Selkoe, "X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation", Proceedings of the National Academy of Sciences 83(2) (1986) 503-507.
[189] R.C. Rivers, J.R. Kumita, G.G. Tartaglia, M.M. Dedmon, A. Pawar, M. Vendruscolo, C.M. Dobson, J. Christodoulou, "Molecular determinants of the aggregation behavior of α‐and β‐synuclein", Protein Science 17(5) (2008) 887-898.
[190] S. Jha, D. Sellin, R. Seidel, R. Winter, "Amyloidogenic propensities and conformational properties of ProIAPP and IAPP in the presence of lipid bilayer membranes", Journal of molecular biology 389(5) (2009) 907-920.
[191] S.S.-S. Wang, K.-N. Liu, T.-C. Han, "Amyloid fibrillation and cytotoxicity of insulin are inhibited by the amphiphilic surfactants", Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1802(6) (2010) 519-530.
[192] C.-K. Chang, W.-A. Chen, C.-Y. Sie, S.-C. Lin, L.T.-W. Lin, T.-H. Lin, C.-C. Hsu, S.S.-S. Wang, "Investigating the effects of plasma pretreatment on the formation of ordered aggregates of lysozyme", Colloids and Surfaces B: Biointerfaces 126 (2015) 154-161.
[193] L.A. Munishkina, A.L. Fink, V.N. Uversky, "Conformational prerequisites for formation of amyloid fibrils from histones", Journal of molecular biology 342(4) (2004) 1305-1324.
[194] M. Fändrich, V. Forge, K. Buder, M. Kittler, C.M. Dobson, S. Diekmann, "Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments", Proceedings of the National Academy of Sciences 100(26) (2003) 15463-15468.
[195] L. Nielsen, S. Frokjaer, J. Brange, V.N. Uversky, A.L. Fink, "Probing the mechanism of insulin fibril formation with insulin mutants", Biochemistry 40(28) (2001) 8397-8409.
[196] G.J. Miroy, Z. Lai, H.A. Lashuel, S.A. Peterson, C. Strang, J.W. Kelly, "Inhibiting transthyretin amyloid fibril formation via protein stabilization", Proceedings of the National Academy of Sciences 93(26) (1996) 15051-15056.
[197] M. Fändrich, M.A. Fletcher, C.M. Dobson, "Amyloid fibrils from muscle myoglobin", Nature 410(6825) (2001) 165.
[198] B. Kerkaert, F. Mestdagh, B. De Meulenaer, "Detection of hen’s egg white lysozyme in food: Comparison between a sensitive HPLC and a commercial ELISA method", Food Chemistry 120(2) (2010) 580-584.
[199] M. Vaney, S. Maignan, M. Riès‐Kautt, A. Ducruix, "High‐resolution structure (1.33 Å) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from spacehab‐01 mission", Acta Crystallographica Section D 52(3) (1996) 505-517.
[200] K.A. Bolin, G.L. Millhauser, "α and 310: the split personality of polypeptide helices", Accounts of Chemical Research 32(12) (1999) 1027-1033.
[201] M. Pepys, P. Hawkins, D. Booth, D. Vigushin, G. Tennent, A. Soutar, N. Totty, O. Nguyen, C. Blake, C. Terry, "Human lysozyme gene mutations cause hereditary systemic amyloidosis", Nature 362(6420) (1993) 553.
[202] L.N. Arnaudov, R. de Vries, "Thermally induced fibrillar aggregation of hen egg white lysozyme", Biophysical Journal 88(1) (2005) 515-526.
[203] S.K. Chaturvedi, J.M. Khan, M.K. Siddiqi, P. Alam, R.H. Khan, "Comparative insight into surfactants mediated amyloidogenesis of lysozyme", International journal of biological macromolecules 83 (2016) 315-325.
[204] F. Yang, G.P. Lim, A.N. Begum, O.J. Ubeda, M.R. Simmons, S.S. Ambegaokar, P.P. Chen, R. Kayed, C.G. Glabe, S.A. Frautschy, "Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo", Journal of Biological Chemistry 280(7) (2005) 5892-5901.
[205] S. Nusrat, R.H. Khan, Unraveling the Promising Action of Promethazine against Amyloid Fibrillation of Human Lysozyme: Implication towards Systemic Amyloidosis, PROTEIN SCIENCE, WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, 2017, pp. 14-14.
[206] G. Semisotnov, N. Rodionova, O. Razgulyaev, V. Uversky, A. Gripas'', R. Gilmanshin, "Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe", Biopolymers: Original Research on Biomolecules 31(1) (1991) 119-128.
[207] E. Nishimoto, S. Yamashita, N. Yamasaki, T. Imoto, "Resolution and characterization of tryptophyl fluorescence of hen egg-white lysozyme by quenching-and time-resolved spectroscopy", Bioscience, biotechnology, and biochemistry 63(2) (1999) 329-336.
[208] F. Ding, Y. Xie, W. Peng, Y.-K. Peng, "Measuring the bioactivity and molecular conformation of typically globular proteins with phenothiazine-derived methylene blue in solid and in solution: a comparative study using photochemistry and computational chemistry", Journal of Photochemistry and Photobiology B: Biology 158 (2016) 69-80.
[209] C.A. Paciullo, D.M. Horner, K.W. Hatton, J.D. Flynn, "Methylene blue for the treatment of septic shock", Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 30(7) (2010) 702-715.
[210] J. Pelgrims, F. De Vos, J. Van den Brande, D. Schrijvers, A. Prové, J. Vermorken, "Methylene blue in the treatment and prevention of ifosfamide-induced encephalopathy: report of 12 cases and a review of the literature", British journal of cancer 82(2) (2000) 291.
[211] A.R. Disanto, J.G. Wagner, "Pharmacokinetics of highly ionized drugs II: methylene blue—absorption, metabolism, and excretion in man and dog after oral administration", Journal of pharmaceutical sciences 61(7) (1972) 1086-1090.
[212] D.B. Kell, "Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples", Archives of toxicology 84(11) (2010) 825-889.
[213] P.P. Liberski, B. Sikorska, J.-J. Hauw, N. Kopp, N. Streichenberger, P. Giraud, J. Boellaard, H. Budka, G.G. Kovacs, J. Ironside, "Ultrastructural characteristics (or evaluation) of Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies or prion diseases", Ultrastructural pathology 34(6) (2010) 351-361.
[214] C.A. Ross, M.A. Poirier, "Protein aggregation and neurodegenerative disease", Nature medicine 10(7) (2004) S10.
[215] A.D. Ferrao-Gonzales, S.O. Souto, J.L. Silva, D. Foguel, "The preaggregated state of an amyloidogenic protein: hydrostatic pressure converts native transthyretin into the amyloidogenic state", Proceedings of the National Academy of Sciences 97(12) (2000) 6445-6450.
[216] F. Chiti, C.M. Dobson, "Amyloid formation by globular proteins under native conditions", Nature chemical biology 5(1) (2009) 15.
[217] C. Zhang, A.P. Jackson, Z.-R. Zhang, Y. Han, S. Yu, R.-Q. He, S. Perrett, "Amyloid-like aggregates of the yeast prion protein ure2 enter vertebrate cells by specific endocytotic pathways and induce apoptosis", PLoS One 5(9) (2010) e12529.
[218] A. Naeem, T.A. Khan, M. Muzaffar, S. Ahmad, M. Saleemuddin, "A partially folded state of ovalbumin at low pH tends to aggregate", Cell biochemistry and biophysics 59(1) (2011) 29-38.
[219] T. Härd, C. Lendel, "Inhibition of amyloid formation", Journal of molecular biology 421(4-5) (2012) 441-465.
[220] H. Naiki, K. Higuchi, M. Hosokawa, T. Takeda, "Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T", Analytical biochemistry 177(2) (1989) 244-249.
[221] H. LeVine III, "[18] Quantification of β-sheet amyloid fibril structures with thioflavin T", Methods in enzymology, Elsevier1999, pp. 274-284.
[222] H. Naiki, F. Gejyo, "[20] Kinetic analysis of amyloid fibril formation", Methods in enzymology, Elsevier1999, pp. 305-318.
[223] L. Nielsen, R. Khurana, A. Coats, S. Frokjaer, J. Brange, S. Vyas, V.N. Uversky, A.L. Fink, "Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism", Biochemistry 40(20) (2001) 6036-6046.
[224] D. Li, T. Zhang, C. Xu, B. Ji, "Effect of pH on the interaction of baicalein with lysozyme by spectroscopic approaches", Journal of Photochemistry and Photobiology B: Biology 104(3) (2011) 414-424.
[225] E. Di Stasio, P. Bizzarri, F. Misiti, E. Pavoni, A. Brancaccio, "A fast and accurate procedure to collect and analyze unfolding fluorescence signal: the case of dystroglycan domains", Biophysical chemistry 107(2) (2004) 197-211.
[226] T. Imoto, L.S. Forster, J. Rupley, F. Tanaka, "Fluorescence of lysozyme: emissions from tryptophan residues 62 and 108 and energy migration", Proceedings of the National Academy of Sciences 69(5) (1972) 1151-1155.
[227] A.K. Thakur, C.M. Rao, "UV-light exposed prion protein fails to form amyloid fibrils", Plos one 3(7) (2008) e2688.
[228] Y.-H. Chen, C.-P. Tseng, S.-C. How, C.-H. Lo, W.-L. Chou, S.S.-S. Wang, "Amyloid fibrillogenesis of lysozyme is suppressed by a food additive brilliant blue FCF", Colloids and Surfaces B: Biointerfaces 142 (2016) 351-359.
[229] M.R. Carmo, A.P.F. Menezes, A.C.L. Nunes, A. Pliássova, A.P. Rolo, C.M. Palmeira, R.A. Cunha, P.M. Canas, G.M. Andrade, "The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis", Neuropharmacology 81 (2014) 142-152.
[230] M. Díaz-Hernández, M. Díez-Zaera, J. Sánchez-Nogueiro, R. Gómez-Villafuertes, J.M. Canals, J. Alberch, M.T. Miras-Portugal, J.J. Lucas, "Altered P2X7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration", The FASEB Journal 23(6) (2009) 1893-1906.
[231] J.K. Ryu, J.G. McLarnon, "Block of purinergic P2X7 receptor is neuroprotective in an animal model of Alzheimer''s disease", Neuroreport 19(17) (2008) 1715-1719.
[232] A.J. Ninfa, D.P. Ballou, "Fundamental laboratory approaches for biochemistry and biotechnology," Fitzgerald Science Press Bethesda, MD1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top