跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張迪傑
研究生(外文):Di-Jie Chang
論文名稱:奈米碳管場發射及溫度效應之研究
論文名稱(外文):Study of Temperature Effect on Field Emission Characteristics of Carbon Nanotubes
指導教授:周賢鎧
指導教授(外文):S.-K. Jou
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:154
中文關鍵詞:奈米碳管場發射熱離子發射溫度效應
外文關鍵詞:carbon nanotubesfield emissionthermionic emissiontemperature effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本研究以電漿輔助化學氣相沈積法,使用甲烷氣體為碳源,於預先濺鍍鐵觸媒的基材上成長奈米碳管,產生表面形貌、長度及密度上具有差異的奈米碳管,並研究在不同溫度下場發射的性質。多數有較佳場發射性質(低起始電場)的樣品,在整個外加電場的範圍內展現了對溫度改變的場發射電流穩定性。而場發射性質較差的樣品在較低電場的區域,則出現了熱激發電子流的溫度效應現象,即奈米碳管的場發射能力直接影響到場發射的溫度效應。
最後,我們發現擁有優異場發射特性的奈米碳管從溫度20K ~ 575K的範圍內,具有傑出的場發射電流溫度穩定特性。
In our investigation, we used methane as carbon source and used Plasma enhanced chemical vapor deposition (PECVD) to grow carbon nanotubes on substrate which had been coated with iron as catalyst. We fabricated carbon nanotubes (CNTs) that owned different surface morphology, different length and different density. And we investigate the field emission characteristics of the CNTs at varied temperature of these samples.
Most samples which had better emission properties (lower turn on field) showed temperature independence in whole applied field range. But samples which had bad emission properties showed the temperature dependence phenomenon similar to thermionics emission. In other words, the temperature effect on field emission was directly influenced by the essential field emission abilities of carbon nanotubes.
Finally, we found CNTs which was excellent in field emission showed outstanding temperature stability in the temperature range from 20K to 575K.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ………………………………………………Ⅰ
CHINESE ABSTRACT ………………………………………………Ⅱ
ENGLISH ABSTRAST ………………………………………………Ⅲ
TABLE OF CONTENTS………………………………………………Ⅳ
LIST OF FIGURES…………………………………………………Ⅴ
LIST OF TABLES …………………………………………………Ⅵ

1 Motivation ………………………………………………… 1

2 Introduction ……………………………………………… 4
2.1 Carbon Nanotubes………………………………………… 5
2.1.1 Structures of Carbon Nanotubes…………………… 5
2.1.2 Properties of carbon nanotubes……………………10
2.1.3 Growth mechanism of carbon nanotubes……………14
2.2 Field emission……………………………………………17
2.3 Thermionic emission ……………………………………20

3 Experiment …………………………………………………23
3.1 Fabrication of PECVD carbon nanotubes…………… 24
3.1.1 Ion beam sputtering deposition (IBSD)………… 24
3.1.2 Microwave plasma enhanced CVD (MPECVD)…………25
3.1.3 Growth of PECVD carbon nanotubes…………………25
3.1.4 Sample’s fabrication condition …………………28
3.2 Characterization of carbon nanotubes………………28
3.2.1 Scanning electron microscopy (SEM)………………28
3.2.2 Field emission apparatus……………………………29

4 Results and Discussion …………………………………30
4.1 Empirical results……………………………………… 30
4.2 Discussion of emission mechanisms………………… 39

5 Conclusion………………………………………………… 60

REFERENCE……………………………………………………… 62

APPENDIX…………………………………………………………67
Sample A…………………………………………………………68
Sample B…………………………………………………………73
Sample C…………………………………………………………79
Sample D…………………………………………………………82
Sample E…………………………………………………………86
Sample F…………………………………………………………91
Sample G…………………………………………………………97
Sample H……………………………………………………… 101
Sample I……………………………………………………… 107
Sample J……………………………………………………… 110
Sample K……………………………………………………… 115
Sample L……………………………………………………… 121
Sample M……………………………………………………… 125
Sample N……………………………………………………… 130
Sample O……………………………………………………… 134
Sample P ………………………………………………………138
Sample Q……………………………………………………… 143
Sample R ………………………………………………………148
[1] M.-C. Kan, J.-L. Huang, J.-C. Sung, K.-H. Chen, B.-S. Yau, “Thermionic emission of amorphous diamond and field emission of carbon nanotubes”, Carbon 41 (2003) 2839–2845.
[2] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of Carbon Nanotubes, Imperial College Press, London, (1998).
[3] K.Tanaka, K. Okahara, M. Okada, T. Yamabe, “Electronic properties of bucky-tube model” ,Chem. Phys. Lett. 191 (1992) 469.
[4] T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley, "Production of single-walled carbon nanotubes via laser vaporization technique." J. Phys. Lett. 99 (1995) 10694.
[5] From presentation by C.Dekker at the Conference on Disorder and Interaction Quamtum Hall and Mesoscopic Systems (1998).
[6] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerences and carbon nanotubes, Academic Press, San Diego (1996).

[7] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature 391 (1998) 59.
[8] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, “Atomic structure and electronic properties of single walled carbon nanotubes”, Nature 391 (1998) 62.
[9] M. M. J. Teacy, T. W. Ebbesen, T. M. Gibson, “Citebase - Quantized phonon specrum of single-wall carbon nanotubes”, Nature 381 (1996) 680.
[10] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes”, Science 277 (1997) 1971.
[11] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K.A. Smith, "Elastic strain of freely suspended single-wall carbon nanotube ropes," Appl. Phys. Lett. 74 (1999) 3803.
[12] M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load”, Science 287 (2000) 637.

[13] M. F. Yu, B. S. Files, S. Arepall, R. S. Ruoff, “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties”, Appl. Phys. Lett. 84 (2000) 5552.
[14] http:// 140.114.18.223/-hcshih/diamond/nanotube.html (2000).

[15] Kukovitsky EF, L'vov SG, Sainov NA, “VLS-growth of carbon nanotubes from the vapor”, Chem. Phys. Lett. 317 (2000) 65.

[16] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chem. Phys. Lett. 315 (1999) 25.

[17] C.-J. Lee, D.-W. kim, T.- J. Lee, Y.-C. Choi, Y.-S. Park, Y.-H. Lee, W.- B. Choi, N.-S. Lee, G.-Su. Park, J.-M. Kim, “Synthesis of align carbon nanotubes using thermal chemical vapor deposition”. Chem. Phys. Lett. 312 (1999) 461–468.

[18] D.-C. Li, L.-Dai, S. Huang, A. W. H. Mau, and Z.-L..Wang, “Structure and growth of aligned carbon nanotube films by pyrolysis”, Chem. Phys. Lett. 316 (2000) 349.


[19] R. H. Fowler and D. L. Nordheim, “Electron Emission in Intense Electric Fields” Roy. Soc. Proc. A119 (1928) 173.

[20] I. Brodie and P. R. Schwoebel, “Vacuum microelectronic devices." Proc. IEEE 82 (1994) 1006-1034.
[21] R. Gomer, “Filed emission and field ionization”, Harvard University Press, Cambridge, MA, (1961).
[22] M Odinos A. Field, Thermionic, and secondary electron emission spectroscopy, Plenum Press, New York, (1984) pp.13–24.
[23] M. arshall AC. “A reformulation of thermionic theory for vacuum diodes.” Surf. Sci.517 (2002) 186–206.
[24] Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields,” Appl. Phys. Lett.70 (1997) 3308.
[25] J.M. Bonard, J.P. Salvetat, T. Stockli and W.A. de Heer, “Field emission from single-wall carbon nanotube films”, Appl. Phys. Lett. 73 (1998) 918.
[26] J.M. Kim, W.B. Choi, N.S. Lee and J.E. Jung, “Field emission from carbon nanotubes for displays”, Diamond and Related Materials 9 (2000) 1184.
[27] O. Groning, O. M.Kuttel, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach “Scanning field emission from patterned carbon nanotube films”, J.Vac. Sci. Technol. B 18 (2000) 665.
[28] B.V. Zeghbroeck, “Principles of Semiconductor Devices”, Colarado University, ece-www.colorado.edu/~bart/.

[29] C. S. Chang, S. Chattopadhyay, L. C. Chen and K. H. Chen, " Band gap dependence of field emission from one dimensional nanostructures grown on n-type and p-type silicon substrates,”
Phys. Rev. B 68 (2003) 125322.
[30] L. C. Chen, C.Y. Wen and K. H. Chen, “Controlling Steps During Early Stages of the Aligned Growth of Carbon Nanotubes Using Microwave Plasma Enhanced Chemical Vapor Deposition”, Advanced Functional Materials, (2002)687-692.
[31] E. L. Murphy, R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region”, Phys. Rev. 102 (1956) 1464.
[32] Sheng-Yuan Chena, Juh-Tzeng Lue , “Temperature dependence of interface barrier height change as implicated by field emission studies of aligned-multiwall carbon nanotubes”, Phys. Lett. A 309 (2003)114-120.
[33] C.L. Chen, C.S. Chen, J.T. Lue, “Single-switch electronic ballast with continuous input current charge pump power factor correction”, Solid State Electron. 44 (2000) 1733.
[34] S.Y. Chen, J.T. Lue, New J. “Temperature of Surface Band Bending and Field Emission for Boron-doped Diamond and Diamond-like Films”, Phys. 4 (2002) 1.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李佩怡(民 88):人際關係理論。測驗與輔導,152 期,3152-3156 頁。
2. 吳麗雲(民 91):人際歷程取向團體諮商(上)~以不安全依附類型大學生人際困擾輔導為例。諮商與輔導,198 期,29-33 頁。
3. 吳麗雲(民 91):人際歷程取向團體諮商(下)~以不安全依附類型大學生人際困擾輔導為例。諮商與輔導,199 期,40-44 頁。
4. 吳麗娟(民 87):父母自我分化、教養態度對青少年子女自我分化、因應策略及適應影響之研究。教育心理學報,30 卷,1 期,91-132 頁。
5. 吳麗娟(民 86):「個體化」、「自我分化」的另一端—談「共依附」的意義與內涵。諮商與輔導,144 期,33-37 頁。
6. 吳武典、簡茂發(民 90):以人事智能為核心的多元智能課程對國小學生個人成長與因應行為的影響。資優教育研究,1 期, 1-28 頁。
7. 吳武典(民 85):國中偏差行為學生學校生活適應之探討。教育心理學報,29 期,25-50 頁。
8. 利翠珊(民 88):家庭心理學的系統觀點與研究。應用心理研究,2 期,21-40 頁。
9. 王大維(民 84):從 Minuchin 的結構家庭治療理論談家庭系統中的權力關係。諮商與輔導,115 期,5-10 頁。
10. 李坤崇(民 84):教師因應策略量表之編製報告。測驗年刊,42 輯,245-264 頁。
11. 林杏足(民 92):青少年諮商的破冰之行—建立關係的方法與策略。輔導季刊,39(2),1-9 頁。
12. 侯崇文(民 90):家庭結構、家庭關係與青少年偏差行為探討。應用心理研究,11 期,25-43 頁。
13. 孫頌賢、修慧蘭(民 91):以家庭系統觀進行家庭測量之研究—以家庭系統分化為例。中華輔導學報,11 期,25-166 頁。
14. 孫頌賢、修慧蘭(民 91):家族治療理論的家庭系統觀。輔導季刊,35(3),41-47 頁。
15. 張振成(民 85):如何建立良好的人際關係。諮商與輔導,123 期,42-44 頁。