跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 17:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡雪兒
研究生(外文):Tsai, Hsueh-Er
論文名稱:結合資料視覺化與自我調節策略之個人化學習對線上學習者之自我調節與序列行為模式之影響:以研究倫理課程為例
論文名稱(外文):Effects of personalized learning integrated with data visualization and self-regulatory strategies on online learners' self-regulation and sequential behavioral patterns: The case of research ethics education
指導教授:孫之元孫之元引用關係
指導教授(外文):Sun, Jerry Chih-Yuan
口試委員:周倩陳昭秀黃芸茵
口試委員(外文):Chou, ChienChen, Chao-HsiuHuang, Yun-yin
口試日期:2017-05-22
學位類別:碩士
校院名稱:國立交通大學
系所名稱:教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:90
中文關鍵詞:個人化學習自我調節資料視覺化序列分析
外文關鍵詞:Personalized LearningSelf-RegulationData VisualizationLag Sequential Analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為瞭解資料視覺化和自我調節策略之系統設計的個人化學習,對於線上學習者自我調節及行為模式的影響,研究對象共182位碩博士生,共分為控制組、自我調節組、資料視覺化組及雙項功能組四個組別。研究工具為自我調節量表、先備知識測驗及Log行為記錄,用以探索學生的序列行為模式。本研究的實驗流程為先進行自我調節前測、先備知識測驗,再進入各組的個人化學習系統,閱讀學術倫理教材並進行單元測驗,最後實施自我調節後測。
本研究結果發現資料視覺化功能有助於促進自我調節的目標設定及尋求協助。此外,自我調節功能結合資料視覺化功能有助於促進學生自我評估,使其在觀看自我的學習表現後,再次閱讀教材,並能促進測驗退步後再回頭複習教材的行為。因此,本研究認為自我調節功能結合資料視覺化能有效地提升自我調節的能力。
本研究建議,在線上學習課程中,除了可將學習的數據分析透過資料視覺化圖形呈現給學生,也需提供自我調節的策略,如目標設定、時間設定等系統功能,輔助資料視覺化的引導,提高學生的自主學習性。最後,本研究成果期望能作為線上學習系統開發與教育研究者之參考。
The purpose of this study was to explore how personalized learning integrated with data visualization and self-regulatory strategies influences online learner’s self-regulation and sequential behavioral patterns.
Participants were 182 graduate students, who were randomly assigned into four groups: control group, self-regulation group, data visualization group, and self-regulation with data visualization group. The instruments include the Online Self-regulated Learning Questionnaire and prior-knowledge test; additionally, the behavioral logs were recorded to explore learner’s sequential behavioral patterns. The experimental procedure is as follows. First, the Online Self-regulated Learning Questionnaire and prior-knowledge test were administered. Second, learners engaged in the personalized learning system where they perused the learning materials about research ethics education and completed the tests. Finally, they completed the post-test of the Online Self-regulated Learning Questionnaire.
The results demonstrated that the use of data visualization function improves goal setting and help-seeking dimensions of self-regulation. In addition, self-regulation integrated with data visualization improved learner’s self-evaluation, so that after witnessing their performance, learners perused the learning materials again, and reviewed learning materials after receiving their test scores. Therefore, self-regulation integrated with data visualization effectively enhanced students’ self-regulation.
This study suggests that course developers should incorporate data visualization functions into the designs of online learning courses. Furthermore, strategies of self-regulation (e.g., goal setting, time management) should be provided so as to guide data visualization and improve students’ self-learning. The findings of the study can serve as the references for online course designers and educators.
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究問題 4
第四節 名詞解釋 5
第五節 研究範圍與限制 6
第二章 文獻探討 7
第一節 個人化學習 7
第二節 資料視覺化 13
第三節 自我調節 15
第四節 序列分析 19
第三章 研究方法 22
第一節 研究架構 22
第二節 研究對象與設計 24
第三節 研究流程 26
第四節 研究工具 29
第五節 資料處理與分析 39
第六節 預試 41
第四章 研究結果 43
第一節 自我調節共變異數分析 43
第二節 學習者行為分析 51
第五章 討論與建議 64
第一節 研究發現與討論 64
第二節 研究限制和未來建議 68
參考文獻 70
附錄一、自我調節量表 78
附錄二、先備知識測驗 81
附錄三、試題分析結果表 86
附錄四、訪談大綱 90
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis (2nd ed.). Cambridge, UK: Cambridge university press.
Baker, R. S., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1), 3-17.
Baker, R. S. J. d. (2010). Data Mining International Encyclopedia of Education (Third Edition) (pp. 112-118). Oxford: Elsevier.
Bandura, A. (1977). Social learning theory. Englewood Cliffs, N.J.: Prentice-Hall.
Barnard, L., Lan, W. Y., To, Y. M., Paton, V. O., & Lai, S.-L. (2009). Measuring self-regulation in online and blended learning environments. The Internet and Higher Education, 12(1), 1-6. doi: 10.1016/j.iheduc.2008.10.005
Baylari, A., & Montazer, G. A. (2009). Design a personalized e-learning system based on item response theory and artificial neural network approach. Expert Systems with Applications, 36(4), 8013-8021. doi: 10.1016/j.eswa.2008.10.080
Bentley, T. (2005). Everyday democracy. Demos.
Berthold, M., Dahn, I., Kiefel, A., Lachmann, P., Nussbaumer, A., & Albert, D. (2012). ROLE learning ontology: An approach to structure recommendations for self-regulated learning in personalized learning environments. The Future of Learning Innovations and Learning Quality, 104.
Bondareva, D., Conati, C., Feyzi-Behnagh, R., Harley, J. M., Azevedo, R., & Bouchet, F. (2013). Inferring learning from gaze data during interaction with an environment to support self-regulated learning. In H. C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.), Artificial intelligence in education: 16th International Conference, AIED 2013, Memphis, TN, USA, July 9-13, 2013. Proceedings (pp. 229-238). Berlin, Heidelberg: Springer Berlin Heidelberg.
Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, 6(2), 87-129. doi: 10.1007/bf00143964
Brusilovsky, P., Eklund, J., & Schwarz, E. (1998). Web-based education for all: A tool for development adaptive courseware. Computer Networks and ISDN Systems, 30(1–7), 291-300. doi: 10.1016/S0169-7552(98)00082-8
Chaumillon, R., Romeas, T., Paillard, C., Bernardin, D., Giraudet, G., Bouchard, J.-F., & Faubert, J. (2017). Enhancing data visualisation to capture the simulator sickness phenomenon: On the usefulness of radar charts. Data in Brief. doi: 10.1016/j.dib.2017.05.051
Chen, C.-M. (2008). Intelligent web-based learning system with personalized learning path guidance. Computers & Education, 51(2), 787-814. doi: 10.1016/j.compedu.2007.08.004
Chen, C.-M. (2009). Personalized E-learning system with self-regulated learning assisted mechanisms for promoting learning performance. Expert Systems with Applications, 36(5), 8816-8829. doi: 10.1016/j.eswa.2008.11.026
Chen, C.-M., Lee, H.-M., & Chen, Y.-H. (2005). Personalized e-learning system using Item Response Theory. Computers & Education, 44(3), 237-255. doi: 10.1016/j.compedu.2004.01.006
Chen, H., Zhao, G., & Xu, N. (2012). The analysis of research hotspots and fronts of knowledge visualization based on CiteSpace II. In S. K. S. Cheung, J. Fong, L.-F. Kwok, K. Li & R. Kwan (Eds.), Hybrid Learning: 5th International Conference, ICHL 2012, Guangzhou, China, August 13-15, 2012. Proceedings (pp. 57-68). Berlin, Heidelberg: Springer Berlin Heidelberg.
Chen, M., Ebert, D., Hagen, H., Laramee, R. S., Liere, R. v., Ma, K.-L., . . . Silver, D. (2009). Data, information, and knowledge in visualization. IEEE Comput. Graph. Appl., 29(1), 12-19. doi: 10.1109/mcg.2009.6
Cheng, K.-H., & Hou, H.-T. (2015). Exploring students’ behavioural patterns during online peer assessment from the affective, cognitive, and metacognitive perspectives: a progressive sequential analysis. Technology, Pedagogy and Education, 24(2), 171-188. doi: 10.1080/1475939X.2013.822416
Chorfi, H., & Jemni, M. (2004). PERSO: Towards an adaptive e-learning system. Journal of Interactive Learning Research, 15(4), 433-447.
Christensen, I., Schiaffino, S., & Armentano, M. (2016). Social group recommendation in the tourism domain. Journal of Intelligent Information Systems, 47(2), 209-231. doi: 10.1007/s10844-016-0400-0
Chrysafiadi, K., & Virvou, M. (2013). PeRSIVA: An empirical evaluation method of a student model of an intelligent e-learning environment for computer programming. Computers & Education, 68, 322-333. doi: 10.1016/j.compedu.2013.05.020
Chudá, D. (2007). Visualization in education of theoretical computer science. Paper presented at the Proceedings of the 2007 international conference on Computer systems and technologies, Bulgaria.
Contero, M., Naya, F., Company, P., Saorin, J. L., & Conesa, J. (2005). Improving visualization skills in engineering education. IEEE Computer Graphics and Applications, 25(5), 24-31. doi: 10.1109/MCG.2005.107
Dembo, M. H., Junge, L. G., & Lynch, R. (2006). Becoming a self-regulated learner: Implications for web-based education. In H. F. O'Neil & R. S. Perez (Eds.), Web-based learning: Theory, research, and practice (pp. 185-202). Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc.
Despotovic-Zrakic, M., Markovic, A., Bogdanovic, Z., Barac, D., & Krco, S. (2012). Providing Adaptivity in Moodle LMS Courses. Educational Technology & Society, 15, 326-338.
Duckett, I. (2010). Personalized Learning and Vocational Education and Training A2 - Peterson, Penelope. In E. Baker & B. McGaw (Eds.), International Encyclopedia of Education (Third Edition) (pp. 391-396). Oxford: Elsevier.
Duval, E. (2011). Attention please! Learning analytics for visualization and recommendation. Paper presented at the Proceedings of the 1st International Conference on Learning Analytics and Knowledge, Banff, Alberta, Canada.
Duval, E., & Verbert, K. (2012). Learning analytics. E-learning and Education, 8(1).
Dwi, C. A., & Basuki, A. (2012). Personalized learning path of a web-based learning system. International Journal of Computer Applications, 53 (7), pp. 17-22.
Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational Psychologist, 34(3), 169-189. doi: 10.1207/s15326985ep3403_3
Essa, A., & Ayad, H. (2012). Student success system: Risk analytics and data visualization using ensembles of predictive models. Paper presented at the Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, Vancouver, British Columbia, Canada.
Essalmi, F., Ayed, L. J. B., Jemni, M., Graf, S., & Kinshuk. (2015). Generalized metrics for the analysis of E-learning personalization strategies. Computers in Human Behavior, 48, 310-322. doi: 10.1016/j.chb.2014.12.050
Fan, L. (2004). Adaptation and personalization in web-based learning support systems. Paper presented at the Workshop on Web-based Support Systems, Beijing, China.
Gómez-Aguilar, D. A., Hernández-García, Á., García-Peñalvo, F. J., & Therón, R. (2015). Tap into visual analysis of customization of grouping of activities in eLearning. Computers in Human Behavior, 47, 60-67. doi: 10.1016/j.chb.2014.11.001
Garrido, A., Morales, L., & Serina, I. (2016). On the use of case-based planning for e-learning personalization. Expert Systems with Applications, 60, 1-15. doi: 10.1016/j.eswa.2016.04.030
Gonzalez, C. S., Guerra, D., Sanabria, H., Moreno, L., Noda, M. A., & Bruno, A. (2010). Automatic system for the detection and analysis of errors to support the personalized feedback. Expert Systems with Applications, 37(1), 140-148. doi: 10.1016/j.eswa.2009.05.027
Gordon, S. C., Dembo, M. H., & Hocevar, D. (2007). Do teachers’ own learning behaviors influence their classroom goal orientation and control ideology? Teaching and Teacher Education, 23(1), 36-46. doi: 10.1016/j.tate.2004.08.002
Graf, S., & Kinshuk. (2012). Personalized learning. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 2592-2594). Boston, MA: Springer US.
Graf, S., Yang, G., Liu, T.-C., & Kinshuk, D. (2009). Automatic, global and dynamic student modeling in a ubiquitous learning environment. Knowledge Management & E-Learning: An International Journal (KM&EL), 1(1), 18-35.
Grissom, S., McNally, M. F., & Naps, T. (2003). Algorithm visualization in CS education: comparing levels of student engagement. Paper presented at the Proceedings of the 2003 ACM symposium on Software visualization, San Diego, California.
Hou, H.-T. (2010a). Applying lag sequential calculation and social network analysis to detect learners' behavioral patterns and generate automatic learning Feedback-scenarios for educational MMORPG games. Paper presented at the 2010 Third IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, Kaohsiung, Taiwan.
Hou, H.-T. (2010b). Exploring the behavioural patterns in project-based learning with online discussion: Quantitative content analysis and progressive sequential analysis. Turkish Online Journal of Educational Technology, 9(3), 52-60.
Hou, H.-T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233. doi: 10.1016/j.compedu.2011.11.015
Hou, H.-T., Wu, S.-Y., Lin, P.-C., Sung, Y.-T., Lin, J.-W., & Chang, K.-E. (2014). A blended mobile learning environment for museum learning. Educational Technology & Society, 17(2), 207-218.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. doi: 10.1080/10705519909540118
Huang, M.-J., Huang, H.-S., & Chen, M.-Y. (2007). Constructing a personalized e-learning system based on genetic algorithm and case-based reasoning approach. Expert Systems with Applications, 33(3), 551-564. doi: 10.1016/j.eswa.2006.05.019
Huang, X. (2011). Study of personalized e-learning system based on knowledge structural graph. Procedia Engineering, 15, 3366-3370. doi: 10.1016/j.proeng.2011.08.631
Hung, Y. H., Chang, R. I., & Lin, C. F. (2016). Hybrid learning style identification and developing adaptive problem-solving learning activities. Computers in Human Behavior, 55, Part A, 552-561. doi: 10.1016/j.chb.2015.07.004
Islam, A. K. M. N. (2016). E-learning system use and its outcomes: Moderating role of perceived compatibility. Telematics and Informatics, 33(1), 48-55. doi: 10.1016/j.tele.2015.06.010
Jeong, H.-Y., Choi, C.-R., & Song, Y.-J. (2012). Personalized learning course planner with e-learning DSS using user profile. Expert Systems with Applications, 39(3), 2567-2577. doi: 10.1016/j.eswa.2011.08.109
Krčadinac, U., Jovanović, J., & Devedžić, V. (2012). Visualizing the Affective Structure of Students Interaction. In S. K. S. Cheung, J. Fong, L.-F. Kwok, K. Li & R. Kwan (Eds.), Hybrid Learning: 5th International Conference, ICHL 2012, Guangzhou, China, August 13-15, 2012. Proceedings (pp. 23-34). Berlin, Heidelberg: Springer Berlin Heidelberg.
Kuo, Y.-C., Walker, A. E., Schroder, K. E. E., & Belland, B. R. (2014). Interaction, Internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. The Internet and Higher Education, 20, 35-50. doi: 10.1016/j.iheduc.2013.10.001
Lee, J.-K., & Lee, W.-K. (2008). The relationship of e-Learner’s self-regulatory efficacy and perception of e-Learning environmental quality. Computers in Human Behavior, 24(1), 32-47. doi: 10.1016/j.chb.2006.12.001
Li, J.-W., Chang, Y.-C., Chu, C.-P., & Tsai, C.-C. (2012). A self-adjusting e-course generation process for personalized learning. Expert Systems with Applications, 39(3), 3223-3232. doi: 10.1016/j.eswa.2011.09.009
Lin, P.-C., Hou, H.-T., Wu, S.-Y., & Chang, K.-E. (2014). Exploring college students' cognitive processing patterns during a collaborative problem-solving teaching activity integrating Facebook discussion and simulation tools. The Internet and Higher Education, 22, 51-56. doi: 10.1016/j.iheduc.2014.05.001
Liu, J. (2012). Improving the quality of the personalized collaborative filtering recommendation approach employing folksonomy method. In D. Jin & S. Lin (Eds.), Advances in Electronic Commerce, Web Application and Communication: Volume 2 (pp. 597-602). Berlin, Heidelberg: Springer Berlin Heidelberg.
Lo, J.-J., Wang, H.-M., & Yeh, S.-W. (2004). Effects of confidence scores and remedial instruction on prepositions learning in adaptive hypermedia. Computers & Education, 42(1), 45-63. doi: 10.1016/S0360-1315(03)00064-2
Lu, J. (2004). Personalized e-learning material recommender system. Paper presented at the International conference on information technology for application, Harbin, China.
Mazza, R., & Milani, C. (2005). Exploring usage analysis in learning systems: Gaining insights from visualisations. Paper presented at the Workshop on usage analysis in learning systems at 12th international conference on artificial intelligence in education, Amsterdam, Netherlands.
Melo, F. R. d., Flôres, E. L., Diniz de Carvalho, S., Gonçalves de Teixeira, R. A., Batista Loja, L. F., & Sousa Gomide, R. d. (2014). Computational organization of didactic contents for personalized virtual learning environments. Computers & Education, 79, 126-137. doi: 10.1016/j.compedu.2014.07.012
Minović, M., Milovanović, M., Šošević, U., & Conde González, M. Á. (2015). Visualisation of student learning model in serious games. Computers in Human Behavior, 47, 98-107. doi: 10.1016/j.chb.2014.09.005
Neal, D. J., & Carey, K. B. (2005). A follow-up psychometric analysis of the self-regulation questionnaire. Psychology of addictive behaviors : journal of the Society of Psychologists in Addictive Behaviors, 19(4), 414-422. doi: 10.1037/0893-164X.19.4.414
Nicol, D. J., & Macfarlane‐Dick, D. (2006). Formative assessment and self‐regulated learning: A model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199-218. doi: 10.1080/03075070600572090
Nunnally, J. C., & Bernstein, I. H. (1994). Psychological theory (3rd ed.): New York: McGraw-Hill.
Papanikolaou, K. A., Magoulas, G. D., & Grigoriadou, M. (2000). A connectionist approach for supporting personalized learning in a web-based learning environment. In P. Brusilovsky, O. Stock & C. Strapparava (Eds.), Adaptive Hypermedia and Adaptive Web-Based Systems: International Conference, AH 2000 Trento, Italy, August 28–30, 2000 Proceedings (pp. 189-201). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ploetzner, R., Lippitsch, S., Galmbacher, M., Heuer, D., & Scherrer, S. (2009). Students’ difficulties in learning from dynamic visualisations and how they may be overcome. Computers in Human Behavior, 25(1), 56-65. doi: 10.1016/j.chb.2008.06.006
Reddy, S., Labutov, I., & Joachims, T. (2016). Learning Student and Content Embeddings for Personalized Lesson Sequence Recommendation. Paper presented at the Proceedings of the Third (2016) ACM Conference on Learning @ Scale, Edinburgh, Scotland, UK.
Reimann, P., Markauskaite, L., & Bannert, M. (2014). E-research and learning theory: What do sequence and process mining methods contribute? British Journal of Educational Technology, 45(3), 528-540. doi: 10.1111/bjet.12146
Roberts-Mahoney, H., Means, A. J., & Garrison, M. J. (2016). Netflixing human capital development: personalized learning technology and the corporatization of K-12 education. Journal of Education Policy, 31(4), 405-420. doi: 10.1080/02680939.2015.1132774
Romero, C., Gutiérrez, S., Freire, M., & Ventura, S. (2008). Mining and visualizing visited trails in web-based educational systems. Paper presented at the Educational Data Mining 2008, QC, Canada.
Ruipérez-Valiente, J. A., Muñoz-Merino, P. J., Leony, D., & Delgado Kloos, C. (2015). ALAS-KA: A learning analytics extension for better understanding the learning process in the Khan Academy platform. Computers in Human Behavior, 47, 139-148. doi: 10.1016/j.chb.2014.07.002
Saye, J., & Brush, T. (2001). The use of embedded scaffolds with hypermedia-supported student-centered learning. Journal of Educational Multimedia and Hypermedia, 10(4), 333-356.
Schunk, D. H. (1995). Self-efficacy, motivation, and performance. Journal of Applied Sport Psychology, 7(2), 112-137. doi: 10.1080/10413209508406961
Schunk, D. H., & Zimmerman, B. J. (1998). Self-regulated learning: From teaching to self-reflective practice. New York, USA: Guilford Press.
Serrano-Laguna, Á., Torrente, J., Moreno-Ger, P., & Fernández-Manjón, B. (2014). Application of learning analytics in educational videogames. Entertainment Computing, 5(4), 313-322. doi: 10.1016/j.entcom.2014.02.003
Shih, K.-P., Chang, C.-Y., Chen, H.-C., & Wang, S.-S. (2005, 27-30 June 2005). A self-regulated learning system with scaffolding support for self-regulated e/m-learning. Paper presented at the ITRE 2005. 3rd International Conference on Information Technology: Research and Education, 2005., Hsinchu, Taiwan.
Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE review, 46(5), 30.
Stathacopoulou, R., Magoulas, G. D., & Grigoriadou, M. (1999, 1999). Neural network-based fuzzy modeling of the student in intelligent tutoring systems. Paper presented at the Neural Networks, 1999. IJCNN '99. International Joint Conference on, Washington, DC.
Steiner, C. M., Nussbaumer, A., & Albert, D. (2009). Supporting self-regulated personalised learning through competence-based knowledge space theory. Policy Futures in Education, 7(6), 645-661. doi: 10.2304/pfie.2009.7.6.645
Su, J.-M., Tseng, S.-S., Lin, H.-Y., & Chen, C.-H. (2011). A personalized learning content adaptation mechanism to meet diverse user needs in mobile learning environments. User Modeling and User-Adapted Interaction, 21(1), 5-49. doi: 10.1007/s11257-010-9094-0
Sun, J. C.-Y., Lin, C.-T., & Chou, C. (forthcoming). Applying learning analytics to explore the effects of motivation on online students' reading behavioral patterns. International Review of Research in Open and Distributed Learning.
Sung, Y. T., Hou, H. T., Liu, C. K., & Chang, K. E. (2010). Mobile guide system using problem-solving strategy for museum learning: a sequential learning behavioural pattern analysis. Journal of Computer Assisted Learning, 26(2), 106-115. doi: 10.1111/j.1365-2729.2010.00345.x
Tabuenca, B., Kalz, M., Drachsler, H., & Specht, M. (2015). Time will tell: The role of mobile learning analytics in self-regulated learning. Computers & Education, 89, 53-74. doi: 10.1016/j.compedu.2015.08.004
Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in Human Behavior, 55, Part B, 1185-1193. doi: 10.1016/j.chb.2015.02.014
Tseng, J. C. R., Chu, H.-C., Hwang, G.-J., & Tsai, C.-C. (2008). Development of an adaptive learning system with two sources of personalization information. Computers & Education, 51(2), 776-786. doi: 10.1016/j.compedu.2007.08.002
Verpoorten, D., Glahn, C., Kravcik, M., Ternier, S., & Specht, M. (2009). Personalisation of learning in virtual learning environments. In U. Cress, V. Dimitrova & M. Specht (Eds.), Learning in the Synergy of Multiple Disciplines: 4th European Conference on Technology Enhanced Learning, EC-TEL 2009 Nice, France, September 29–October 2, 2009 Proceedings (pp. 52-66). Berlin, Heidelberg: Springer Berlin Heidelberg.
Winne, P. H. (2001). Self-regulated learning viewed from models of information processing. Self-regulated learning and academic achievement: Theoretical perspectives, 2, 153-189.
Witten, I. H., & Frank, E. (2000). Data mining: Practical machine learning tools and techniques with Java implementations.
Wu, S.-Y., & Hou, H.-T. (2015). How cognitive styles affect the learning behaviors of online problem-solving based discussion activity a lag sequential analysis. Journal of Educational Computing Research, 52(2), 277-298.
Yang, T.-C., Chen, S. Y., & Hwang, G.-J. (2015). The influences of a two-tier test strategy on student learning: A lag sequential analysis approach. Computers & Education, 82, 366-377. doi: 10.1016/j.compedu.2014.11.021
Zhan, X., Hu, R., & Wang, X. (2014). Multi-parameter systematic strategy opinion that predicts, prevents, and personalized treats a cancer. EPMA Journal, 5(1), 1-1. doi: 10.1186/1878-5085-5-s1-a25
Zhang, D., Karabatis, G., Chen, Z., Adipat, B., Dai, L., Zhang, Z., & Wang, Y. (2006). Personalization and visualization on handheld devices. Paper presented at the Proceedings of the 2006 ACM symposium on Applied computing, Dijon, France.
Zimmerman, B., & Schunk, D. H. (2011). Handbook of self-regulation of learning and performance. New York, USA: Routledge.
Zimmerman, B. J. (1989). A social cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3), 329-339. doi: 10.1037/0022-0663.81.3.329
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70.
Zimmerman, B. J. (2015). Self-regulated learning: Theories, measures, and outcomes. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (Second Edition) (pp. 541-546). Oxford: Elsevier.
Zimmerman, B. J., & Risemberg, R. (1997). Self-regulatory dimensions of academic learning and motivation. In G. D. Phye (Ed.), Handbook of academic learning: Construction of knowledge (pp. 105-125). San Diego, California: Academic Press, Inc.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top