|
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis (2nd ed.). Cambridge, UK: Cambridge university press. Baker, R. S., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1), 3-17. Baker, R. S. J. d. (2010). Data Mining International Encyclopedia of Education (Third Edition) (pp. 112-118). Oxford: Elsevier. Bandura, A. (1977). Social learning theory. Englewood Cliffs, N.J.: Prentice-Hall. Barnard, L., Lan, W. Y., To, Y. M., Paton, V. O., & Lai, S.-L. (2009). Measuring self-regulation in online and blended learning environments. The Internet and Higher Education, 12(1), 1-6. doi: 10.1016/j.iheduc.2008.10.005 Baylari, A., & Montazer, G. A. (2009). Design a personalized e-learning system based on item response theory and artificial neural network approach. Expert Systems with Applications, 36(4), 8013-8021. doi: 10.1016/j.eswa.2008.10.080 Bentley, T. (2005). Everyday democracy. Demos. Berthold, M., Dahn, I., Kiefel, A., Lachmann, P., Nussbaumer, A., & Albert, D. (2012). ROLE learning ontology: An approach to structure recommendations for self-regulated learning in personalized learning environments. The Future of Learning Innovations and Learning Quality, 104. Bondareva, D., Conati, C., Feyzi-Behnagh, R., Harley, J. M., Azevedo, R., & Bouchet, F. (2013). Inferring learning from gaze data during interaction with an environment to support self-regulated learning. In H. C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.), Artificial intelligence in education: 16th International Conference, AIED 2013, Memphis, TN, USA, July 9-13, 2013. Proceedings (pp. 229-238). Berlin, Heidelberg: Springer Berlin Heidelberg. Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, 6(2), 87-129. doi: 10.1007/bf00143964 Brusilovsky, P., Eklund, J., & Schwarz, E. (1998). Web-based education for all: A tool for development adaptive courseware. Computer Networks and ISDN Systems, 30(1–7), 291-300. doi: 10.1016/S0169-7552(98)00082-8 Chaumillon, R., Romeas, T., Paillard, C., Bernardin, D., Giraudet, G., Bouchard, J.-F., & Faubert, J. (2017). Enhancing data visualisation to capture the simulator sickness phenomenon: On the usefulness of radar charts. Data in Brief. doi: 10.1016/j.dib.2017.05.051 Chen, C.-M. (2008). Intelligent web-based learning system with personalized learning path guidance. Computers & Education, 51(2), 787-814. doi: 10.1016/j.compedu.2007.08.004 Chen, C.-M. (2009). Personalized E-learning system with self-regulated learning assisted mechanisms for promoting learning performance. Expert Systems with Applications, 36(5), 8816-8829. doi: 10.1016/j.eswa.2008.11.026 Chen, C.-M., Lee, H.-M., & Chen, Y.-H. (2005). Personalized e-learning system using Item Response Theory. Computers & Education, 44(3), 237-255. doi: 10.1016/j.compedu.2004.01.006 Chen, H., Zhao, G., & Xu, N. (2012). The analysis of research hotspots and fronts of knowledge visualization based on CiteSpace II. In S. K. S. Cheung, J. Fong, L.-F. Kwok, K. Li & R. Kwan (Eds.), Hybrid Learning: 5th International Conference, ICHL 2012, Guangzhou, China, August 13-15, 2012. Proceedings (pp. 57-68). Berlin, Heidelberg: Springer Berlin Heidelberg. Chen, M., Ebert, D., Hagen, H., Laramee, R. S., Liere, R. v., Ma, K.-L., . . . Silver, D. (2009). Data, information, and knowledge in visualization. IEEE Comput. Graph. Appl., 29(1), 12-19. doi: 10.1109/mcg.2009.6 Cheng, K.-H., & Hou, H.-T. (2015). Exploring students’ behavioural patterns during online peer assessment from the affective, cognitive, and metacognitive perspectives: a progressive sequential analysis. Technology, Pedagogy and Education, 24(2), 171-188. doi: 10.1080/1475939X.2013.822416 Chorfi, H., & Jemni, M. (2004). PERSO: Towards an adaptive e-learning system. Journal of Interactive Learning Research, 15(4), 433-447. Christensen, I., Schiaffino, S., & Armentano, M. (2016). Social group recommendation in the tourism domain. Journal of Intelligent Information Systems, 47(2), 209-231. doi: 10.1007/s10844-016-0400-0 Chrysafiadi, K., & Virvou, M. (2013). PeRSIVA: An empirical evaluation method of a student model of an intelligent e-learning environment for computer programming. Computers & Education, 68, 322-333. doi: 10.1016/j.compedu.2013.05.020 Chudá, D. (2007). Visualization in education of theoretical computer science. Paper presented at the Proceedings of the 2007 international conference on Computer systems and technologies, Bulgaria. Contero, M., Naya, F., Company, P., Saorin, J. L., & Conesa, J. (2005). Improving visualization skills in engineering education. IEEE Computer Graphics and Applications, 25(5), 24-31. doi: 10.1109/MCG.2005.107 Dembo, M. H., Junge, L. G., & Lynch, R. (2006). Becoming a self-regulated learner: Implications for web-based education. In H. F. O'Neil & R. S. Perez (Eds.), Web-based learning: Theory, research, and practice (pp. 185-202). Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc. Despotovic-Zrakic, M., Markovic, A., Bogdanovic, Z., Barac, D., & Krco, S. (2012). Providing Adaptivity in Moodle LMS Courses. Educational Technology & Society, 15, 326-338. Duckett, I. (2010). Personalized Learning and Vocational Education and Training A2 - Peterson, Penelope. In E. Baker & B. McGaw (Eds.), International Encyclopedia of Education (Third Edition) (pp. 391-396). Oxford: Elsevier. Duval, E. (2011). Attention please! Learning analytics for visualization and recommendation. Paper presented at the Proceedings of the 1st International Conference on Learning Analytics and Knowledge, Banff, Alberta, Canada. Duval, E., & Verbert, K. (2012). Learning analytics. E-learning and Education, 8(1). Dwi, C. A., & Basuki, A. (2012). Personalized learning path of a web-based learning system. International Journal of Computer Applications, 53 (7), pp. 17-22. Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational Psychologist, 34(3), 169-189. doi: 10.1207/s15326985ep3403_3 Essa, A., & Ayad, H. (2012). Student success system: Risk analytics and data visualization using ensembles of predictive models. Paper presented at the Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, Vancouver, British Columbia, Canada. Essalmi, F., Ayed, L. J. B., Jemni, M., Graf, S., & Kinshuk. (2015). Generalized metrics for the analysis of E-learning personalization strategies. Computers in Human Behavior, 48, 310-322. doi: 10.1016/j.chb.2014.12.050 Fan, L. (2004). Adaptation and personalization in web-based learning support systems. Paper presented at the Workshop on Web-based Support Systems, Beijing, China. Gómez-Aguilar, D. A., Hernández-García, Á., García-Peñalvo, F. J., & Therón, R. (2015). Tap into visual analysis of customization of grouping of activities in eLearning. Computers in Human Behavior, 47, 60-67. doi: 10.1016/j.chb.2014.11.001 Garrido, A., Morales, L., & Serina, I. (2016). On the use of case-based planning for e-learning personalization. Expert Systems with Applications, 60, 1-15. doi: 10.1016/j.eswa.2016.04.030 Gonzalez, C. S., Guerra, D., Sanabria, H., Moreno, L., Noda, M. A., & Bruno, A. (2010). Automatic system for the detection and analysis of errors to support the personalized feedback. Expert Systems with Applications, 37(1), 140-148. doi: 10.1016/j.eswa.2009.05.027 Gordon, S. C., Dembo, M. H., & Hocevar, D. (2007). Do teachers’ own learning behaviors influence their classroom goal orientation and control ideology? Teaching and Teacher Education, 23(1), 36-46. doi: 10.1016/j.tate.2004.08.002 Graf, S., & Kinshuk. (2012). Personalized learning. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 2592-2594). Boston, MA: Springer US. Graf, S., Yang, G., Liu, T.-C., & Kinshuk, D. (2009). Automatic, global and dynamic student modeling in a ubiquitous learning environment. Knowledge Management & E-Learning: An International Journal (KM&EL), 1(1), 18-35. Grissom, S., McNally, M. F., & Naps, T. (2003). Algorithm visualization in CS education: comparing levels of student engagement. Paper presented at the Proceedings of the 2003 ACM symposium on Software visualization, San Diego, California. Hou, H.-T. (2010a). Applying lag sequential calculation and social network analysis to detect learners' behavioral patterns and generate automatic learning Feedback-scenarios for educational MMORPG games. Paper presented at the 2010 Third IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, Kaohsiung, Taiwan. Hou, H.-T. (2010b). Exploring the behavioural patterns in project-based learning with online discussion: Quantitative content analysis and progressive sequential analysis. Turkish Online Journal of Educational Technology, 9(3), 52-60. Hou, H.-T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233. doi: 10.1016/j.compedu.2011.11.015 Hou, H.-T., Wu, S.-Y., Lin, P.-C., Sung, Y.-T., Lin, J.-W., & Chang, K.-E. (2014). A blended mobile learning environment for museum learning. Educational Technology & Society, 17(2), 207-218. Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. doi: 10.1080/10705519909540118 Huang, M.-J., Huang, H.-S., & Chen, M.-Y. (2007). Constructing a personalized e-learning system based on genetic algorithm and case-based reasoning approach. Expert Systems with Applications, 33(3), 551-564. doi: 10.1016/j.eswa.2006.05.019 Huang, X. (2011). Study of personalized e-learning system based on knowledge structural graph. Procedia Engineering, 15, 3366-3370. doi: 10.1016/j.proeng.2011.08.631 Hung, Y. H., Chang, R. I., & Lin, C. F. (2016). Hybrid learning style identification and developing adaptive problem-solving learning activities. Computers in Human Behavior, 55, Part A, 552-561. doi: 10.1016/j.chb.2015.07.004 Islam, A. K. M. N. (2016). E-learning system use and its outcomes: Moderating role of perceived compatibility. Telematics and Informatics, 33(1), 48-55. doi: 10.1016/j.tele.2015.06.010 Jeong, H.-Y., Choi, C.-R., & Song, Y.-J. (2012). Personalized learning course planner with e-learning DSS using user profile. Expert Systems with Applications, 39(3), 2567-2577. doi: 10.1016/j.eswa.2011.08.109 Krčadinac, U., Jovanović, J., & Devedžić, V. (2012). Visualizing the Affective Structure of Students Interaction. In S. K. S. Cheung, J. Fong, L.-F. Kwok, K. Li & R. Kwan (Eds.), Hybrid Learning: 5th International Conference, ICHL 2012, Guangzhou, China, August 13-15, 2012. Proceedings (pp. 23-34). Berlin, Heidelberg: Springer Berlin Heidelberg. Kuo, Y.-C., Walker, A. E., Schroder, K. E. E., & Belland, B. R. (2014). Interaction, Internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. The Internet and Higher Education, 20, 35-50. doi: 10.1016/j.iheduc.2013.10.001 Lee, J.-K., & Lee, W.-K. (2008). The relationship of e-Learner’s self-regulatory efficacy and perception of e-Learning environmental quality. Computers in Human Behavior, 24(1), 32-47. doi: 10.1016/j.chb.2006.12.001 Li, J.-W., Chang, Y.-C., Chu, C.-P., & Tsai, C.-C. (2012). A self-adjusting e-course generation process for personalized learning. Expert Systems with Applications, 39(3), 3223-3232. doi: 10.1016/j.eswa.2011.09.009 Lin, P.-C., Hou, H.-T., Wu, S.-Y., & Chang, K.-E. (2014). Exploring college students' cognitive processing patterns during a collaborative problem-solving teaching activity integrating Facebook discussion and simulation tools. The Internet and Higher Education, 22, 51-56. doi: 10.1016/j.iheduc.2014.05.001 Liu, J. (2012). Improving the quality of the personalized collaborative filtering recommendation approach employing folksonomy method. In D. Jin & S. Lin (Eds.), Advances in Electronic Commerce, Web Application and Communication: Volume 2 (pp. 597-602). Berlin, Heidelberg: Springer Berlin Heidelberg. Lo, J.-J., Wang, H.-M., & Yeh, S.-W. (2004). Effects of confidence scores and remedial instruction on prepositions learning in adaptive hypermedia. Computers & Education, 42(1), 45-63. doi: 10.1016/S0360-1315(03)00064-2 Lu, J. (2004). Personalized e-learning material recommender system. Paper presented at the International conference on information technology for application, Harbin, China. Mazza, R., & Milani, C. (2005). Exploring usage analysis in learning systems: Gaining insights from visualisations. Paper presented at the Workshop on usage analysis in learning systems at 12th international conference on artificial intelligence in education, Amsterdam, Netherlands. Melo, F. R. d., Flôres, E. L., Diniz de Carvalho, S., Gonçalves de Teixeira, R. A., Batista Loja, L. F., & Sousa Gomide, R. d. (2014). Computational organization of didactic contents for personalized virtual learning environments. Computers & Education, 79, 126-137. doi: 10.1016/j.compedu.2014.07.012 Minović, M., Milovanović, M., Šošević, U., & Conde González, M. Á. (2015). Visualisation of student learning model in serious games. Computers in Human Behavior, 47, 98-107. doi: 10.1016/j.chb.2014.09.005 Neal, D. J., & Carey, K. B. (2005). A follow-up psychometric analysis of the self-regulation questionnaire. Psychology of addictive behaviors : journal of the Society of Psychologists in Addictive Behaviors, 19(4), 414-422. doi: 10.1037/0893-164X.19.4.414 Nicol, D. J., & Macfarlane‐Dick, D. (2006). Formative assessment and self‐regulated learning: A model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199-218. doi: 10.1080/03075070600572090 Nunnally, J. C., & Bernstein, I. H. (1994). Psychological theory (3rd ed.): New York: McGraw-Hill. Papanikolaou, K. A., Magoulas, G. D., & Grigoriadou, M. (2000). A connectionist approach for supporting personalized learning in a web-based learning environment. In P. Brusilovsky, O. Stock & C. Strapparava (Eds.), Adaptive Hypermedia and Adaptive Web-Based Systems: International Conference, AH 2000 Trento, Italy, August 28–30, 2000 Proceedings (pp. 189-201). Berlin, Heidelberg: Springer Berlin Heidelberg. Ploetzner, R., Lippitsch, S., Galmbacher, M., Heuer, D., & Scherrer, S. (2009). Students’ difficulties in learning from dynamic visualisations and how they may be overcome. Computers in Human Behavior, 25(1), 56-65. doi: 10.1016/j.chb.2008.06.006 Reddy, S., Labutov, I., & Joachims, T. (2016). Learning Student and Content Embeddings for Personalized Lesson Sequence Recommendation. Paper presented at the Proceedings of the Third (2016) ACM Conference on Learning @ Scale, Edinburgh, Scotland, UK. Reimann, P., Markauskaite, L., & Bannert, M. (2014). E-research and learning theory: What do sequence and process mining methods contribute? British Journal of Educational Technology, 45(3), 528-540. doi: 10.1111/bjet.12146 Roberts-Mahoney, H., Means, A. J., & Garrison, M. J. (2016). Netflixing human capital development: personalized learning technology and the corporatization of K-12 education. Journal of Education Policy, 31(4), 405-420. doi: 10.1080/02680939.2015.1132774 Romero, C., Gutiérrez, S., Freire, M., & Ventura, S. (2008). Mining and visualizing visited trails in web-based educational systems. Paper presented at the Educational Data Mining 2008, QC, Canada. Ruipérez-Valiente, J. A., Muñoz-Merino, P. J., Leony, D., & Delgado Kloos, C. (2015). ALAS-KA: A learning analytics extension for better understanding the learning process in the Khan Academy platform. Computers in Human Behavior, 47, 139-148. doi: 10.1016/j.chb.2014.07.002 Saye, J., & Brush, T. (2001). The use of embedded scaffolds with hypermedia-supported student-centered learning. Journal of Educational Multimedia and Hypermedia, 10(4), 333-356. Schunk, D. H. (1995). Self-efficacy, motivation, and performance. Journal of Applied Sport Psychology, 7(2), 112-137. doi: 10.1080/10413209508406961 Schunk, D. H., & Zimmerman, B. J. (1998). Self-regulated learning: From teaching to self-reflective practice. New York, USA: Guilford Press. Serrano-Laguna, Á., Torrente, J., Moreno-Ger, P., & Fernández-Manjón, B. (2014). Application of learning analytics in educational videogames. Entertainment Computing, 5(4), 313-322. doi: 10.1016/j.entcom.2014.02.003 Shih, K.-P., Chang, C.-Y., Chen, H.-C., & Wang, S.-S. (2005, 27-30 June 2005). A self-regulated learning system with scaffolding support for self-regulated e/m-learning. Paper presented at the ITRE 2005. 3rd International Conference on Information Technology: Research and Education, 2005., Hsinchu, Taiwan. Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE review, 46(5), 30. Stathacopoulou, R., Magoulas, G. D., & Grigoriadou, M. (1999, 1999). Neural network-based fuzzy modeling of the student in intelligent tutoring systems. Paper presented at the Neural Networks, 1999. IJCNN '99. International Joint Conference on, Washington, DC. Steiner, C. M., Nussbaumer, A., & Albert, D. (2009). Supporting self-regulated personalised learning through competence-based knowledge space theory. Policy Futures in Education, 7(6), 645-661. doi: 10.2304/pfie.2009.7.6.645 Su, J.-M., Tseng, S.-S., Lin, H.-Y., & Chen, C.-H. (2011). A personalized learning content adaptation mechanism to meet diverse user needs in mobile learning environments. User Modeling and User-Adapted Interaction, 21(1), 5-49. doi: 10.1007/s11257-010-9094-0 Sun, J. C.-Y., Lin, C.-T., & Chou, C. (forthcoming). Applying learning analytics to explore the effects of motivation on online students' reading behavioral patterns. International Review of Research in Open and Distributed Learning. Sung, Y. T., Hou, H. T., Liu, C. K., & Chang, K. E. (2010). Mobile guide system using problem-solving strategy for museum learning: a sequential learning behavioural pattern analysis. Journal of Computer Assisted Learning, 26(2), 106-115. doi: 10.1111/j.1365-2729.2010.00345.x Tabuenca, B., Kalz, M., Drachsler, H., & Specht, M. (2015). Time will tell: The role of mobile learning analytics in self-regulated learning. Computers & Education, 89, 53-74. doi: 10.1016/j.compedu.2015.08.004 Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in Human Behavior, 55, Part B, 1185-1193. doi: 10.1016/j.chb.2015.02.014 Tseng, J. C. R., Chu, H.-C., Hwang, G.-J., & Tsai, C.-C. (2008). Development of an adaptive learning system with two sources of personalization information. Computers & Education, 51(2), 776-786. doi: 10.1016/j.compedu.2007.08.002 Verpoorten, D., Glahn, C., Kravcik, M., Ternier, S., & Specht, M. (2009). Personalisation of learning in virtual learning environments. In U. Cress, V. Dimitrova & M. Specht (Eds.), Learning in the Synergy of Multiple Disciplines: 4th European Conference on Technology Enhanced Learning, EC-TEL 2009 Nice, France, September 29–October 2, 2009 Proceedings (pp. 52-66). Berlin, Heidelberg: Springer Berlin Heidelberg. Winne, P. H. (2001). Self-regulated learning viewed from models of information processing. Self-regulated learning and academic achievement: Theoretical perspectives, 2, 153-189. Witten, I. H., & Frank, E. (2000). Data mining: Practical machine learning tools and techniques with Java implementations. Wu, S.-Y., & Hou, H.-T. (2015). How cognitive styles affect the learning behaviors of online problem-solving based discussion activity a lag sequential analysis. Journal of Educational Computing Research, 52(2), 277-298. Yang, T.-C., Chen, S. Y., & Hwang, G.-J. (2015). The influences of a two-tier test strategy on student learning: A lag sequential analysis approach. Computers & Education, 82, 366-377. doi: 10.1016/j.compedu.2014.11.021 Zhan, X., Hu, R., & Wang, X. (2014). Multi-parameter systematic strategy opinion that predicts, prevents, and personalized treats a cancer. EPMA Journal, 5(1), 1-1. doi: 10.1186/1878-5085-5-s1-a25 Zhang, D., Karabatis, G., Chen, Z., Adipat, B., Dai, L., Zhang, Z., & Wang, Y. (2006). Personalization and visualization on handheld devices. Paper presented at the Proceedings of the 2006 ACM symposium on Applied computing, Dijon, France. Zimmerman, B., & Schunk, D. H. (2011). Handbook of self-regulation of learning and performance. New York, USA: Routledge. Zimmerman, B. J. (1989). A social cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3), 329-339. doi: 10.1037/0022-0663.81.3.329 Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70. Zimmerman, B. J. (2015). Self-regulated learning: Theories, measures, and outcomes. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (Second Edition) (pp. 541-546). Oxford: Elsevier. Zimmerman, B. J., & Risemberg, R. (1997). Self-regulatory dimensions of academic learning and motivation. In G. D. Phye (Ed.), Handbook of academic learning: Construction of knowledge (pp. 105-125). San Diego, California: Academic Press, Inc.
|