[1] Andrews, K. R., Moriwake, V. N., Wilcox, C., Grau, E. G., Kelley, C., Pyle, R. L., & Bowen, B. W. (2014). Phylogeographic analyses of submesophotic snappers Etelis coruscans and Etelis “marshi” (Family Lutjanidae) reveal concordant genetic structure across the Hawaiian Archipelago. PLoS ONE, 9, e91665.
[2] Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93, 2533-2547.
[3] Chao, A., Chiu, C. H., & Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45, 297-324.
[4] Chao, A., & Jost, L. (2015a). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6, 873-882.
[5] Chao, A., Jost, L., Hsieh, T. C., Ma, K. H., Sherwin, W. B., & Rollins, L. A. (2015b). Expected Shannon entropy and Shannon differentiation between subpopulations for neutral genes under the finite island model. PloS ONE, 10, e0125471.
[6] Chao, A., Wang, Y. T., & Jost, L. (2013). Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Methods in Ecology and Evolution, 4, 1091-1100.
[7] Crow, J. F., & Kimura, M. (1970). An introduction to population genetics theory. The Blackburn Press, New Jersey.
[8] Eble, J. A., Toonen, R. J., Sorenson, L., Basch, L. V., Papastamatiou, Y. P., & Bowen, B. W. (2011). Escaping paradise: larval export from Hawaii in an Indo-Pacific reef fish, the yellow tang (Zebrasoma flavescens). Marine Ecology Progress Series, 428, 245-258.
[9] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoretical population biology, 3, 87-112.
[10] Gaggiotti, O. E., Chao, A., Peres‐Neto, P., Chiu, C. H., Edwards, C., Fortin, M. J., Jost, L., & Selkoe, K. A. (2018). Diversity from genes to ecosystems: A unifying framework to study variation across biological metrics and scales. Evolutionary Applications. DOI: 10.1111 /eva.12593.
[11] Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427-432.
[12] Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New Jersey, USA.
[13] Kimura, M., & Crow, J. F. (1963). The measurement of effective population number. Evolution, 17, 279-288.
[14] Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49, 725-738.
[15] Kimura, M., & Ota, T. (1975). Distribution of allelic frequencies in a finite population under stepwise production of neutral alleles. Proceedings of the National Academy of Sciences, 72, 2761-2764.
[16] Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). 100 of the world's worst invasive alien species: a selection from the global invasive species database (Vol. 12). Auckland: Invasive Species Specialist Group.
[17] MacArthur, R. H. (1965). Patterns of species diversity. Biological reviews, 40, 510-533.
[18] MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton university press, United States.
[19] Rollins, L. A. (2009). A molecular investigation of dispersal, drift and selection to aid management of an invasion in progress. The University of New South Wales. Australia.
[20] Rollins, L. A., Woolnough, A. P., Wilton, A. N., Sinclair, R. O. N., & Sherwin, W. B. (2009). Invasive species can't cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Molecular Ecology, 18, 1560-1573.
[21] Selkoe, K. A., Halpern, B. S., Ebert, C. M., Franklin, E. C., Selig, E. R., Casey, K. S., & Toonen, R. J. (2009). A map of human impacts to a “pristine” coral reef ecosystem, the Papahānaumokuākea Marine National Monument. Coral Reefs, 28, 635-650.
[22] Shannon, C. E., & Weaver, W. (1949). A Mathematical Model of Communication Urbana. University of Illinois Press, United States.
[23] Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.
[24] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52, 479-487.
[25] Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30, 279-338.
[26] Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 213-251.
[27] Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97-159.
[28] Wright, S. (1938). The distribution of gene frequencies under irreversible mutation. Proceedings of the National Academy of Sciences, 24, 253-259.
[29] Wright, S. (1943). Isolation by distance. Genetics, 28, 114-138.
[30] Wright, S. (1950). Genetical structure of populations. Nature, 166, 247-49.
[31] 趙蓮菊, 邱春火, 王怡婷, 謝宗震, 馬光輝 (2013). 仰觀宇宙之大,俯察品類之盛:如何量化生物多樣性. Journal of the Chinese Statistical Association, 51, 8-53.
[32] 謝宗震 (2013). 生物多樣性的稀釋與預測 趙蓮菊指導 新竹市國立清華大學統計學研究所博士論文。[33] 馬光輝 (2010). 族群遺傳學中有限島嶼模型之分化指標估計 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文。