|
[1] 衛生福利部台灣病人安全資訊網,台灣病人安全通報系統2016年TPR年 報,取自: http://www.patientsafety.mohw.gov.tw/Content/Downloads/List01.aspx?SiteID=1&MmmID=621273303702500244 [2] H. C. Hanger, M. C. Ball, and L. A. Wood, “An analysis of falls in the hospital: can we do without bedrails?,” Journal of the American Geriatrics Society, 1999. [3] M. Vassallo, R. A. Amersey, J. C. Sharma, and S. C. Allen, “Falls on integrated medical wards,” Gerontology, 2000. [4] D. Oliver, A. Hopper, and P. Seed, “Do hospital fall prevention programs work? A systematic review,” Journal America Geriatrics Society, 2000. [5] K. Hill, M. Vu, and W. Walsh, “Falls in the acute hospital settingimpact on resource utilisation,” Australian Health Review, 2007. [6] S. Heinrich, K. Rapp, U. Rissmann, C. Becker, H.H. König, “Cost of falls in old age: A systematic review,” Osteoporosis International 2010, Volume 21, Issue 6, pp. 891–902. [7] 國家發展委員會,中華民國人口推估(105至150年),取自: https://www.ndc.gov.tw/Content_List.aspx?n=84223C65B6F94D72 [8] 台灣失智症協會,台灣失智症人口推估,取自: http://www.tada2002.org.tw/About/IsntDementia [9] 社團法人台灣長期照護專業協會(無日期),長期照護歷史軌跡,民106年1 月6日,取自: http://www.ltcpa.org.tw/main/index.php?func=introduce&nID=8 [10] 全國法規資料庫(民104年6月3日),制定長期照顧服務法,民106年1月6日,取自: http://law.moj.gov.tw/News/news_detail.aspx?id=114581 [11] 中華民國行政院(民104年6月4日),行政院會通過「長期照顧保險法」草案,民106年1月6日,取自: http://www.ey.gov.tw/news_Content2.aspx?n=F8BAEBE9491FC830&s=86739C171F4C3CCD [12] 衛生福利部(民105年8月3日),長照十年計畫2.0,民106年1月6日,取自: http://www.mohw.gov.tw/MOHW_Upload/doc/105年8月3日溝通說明會簡報_0055618003.pdf [13] 失能老人及身心障礙者補助使用居家服務計畫 - 內政部,取自: www.moi.gov.tw/files/news_file/101身心障礙者補助使用居家服務計畫.doc [14] 李宗育、陸鳳屏、詹鼎正,「老年人跌倒之危險因子、評估、及預防」,內科學誌,第二十五卷,第三期,2014,137-142頁,取自: http://www.tsim.org.tw/journal/jour25-3/02.PDF [15] D. Oliver, “Prevention of falls in hospital inpatients: agendas for research and practice,” Age Ageing, 2004. [16] E. Capezuti, B. L. Brush, S. Lane, H. U. Rabinowitz, and M. Secic, “Bed-exit alarm effectiveness,” Archives of Gerontology and Geriatrics, 2009. [17] J. Hilbe, E. Schulc, B. Linder, and C. Them, “Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls,” International Journal of Medical Informatics, 2010. [18] K. Imaizumi, Y. Iwakami, and K. Yamashita, “Availability of Monitoring System for Supporting Healthcare of Elderly People,” Japanese Journal of Applied IT Healthcare, 2010. [19] M. Bruyneel, W. Libert, and V. Ninane, “Detection of bed-exit events using a new wireless bed monitoring assistance,” International Journal of Medical Informatics, 2011. [20] http://www.ncbi.nlm.nih.gov/pubmed/15532858, “Bed exit alarms,” Health Devices, 2004. [21] R. I. Shorr, A. M. Chandler, L. C. Mion, T. M. Waters, M. Liu, M. J. Daniels, L. A. Kessler, and S. T. Miller, “Effects of an intervention to increase bed alarm use to prevent falls in hospitalized patients: a cluster randomized trial,” Annals of Internal Medicine, 2012. [22] R. Tideiksaar, C. F. Feiner, and J. Maby, “Falls prevention: the efficacy of a bed alarm system in an acute-care setting,” The Mount Sinai Journal of Medicine New York, 1993. [23] A. Härmä, W. ten Kate, and J. Espina, “Bed Exit Prediction Based on Movement and Posture Data,” Proceedings of International Conference on Biomedical and Health Informatics (BHI), 2014, pp. 165-168 [24] T. L. Bozano, G. Camus, J. C. Basilio, J. M. Basilio, and J. L. Viard, U. S. Patent No. 2011,006,893,2A1 (14 November, 2016) [25] R.L.S. Torres, Q. Shi, A.V. D. Hengel, and D. C. Ranasinghe, “A hierarchical model for recognizing alarming states in a batteryless sensor alarm intervention for preventing falls in older people,” Pervasive and Mobile Computing, vol 40, pp. 1-16, 2017. [26] W. O. de Morais, J. Lundström, and N. Wickström, “Active In-Database Processing to Support Ambient Assisted Living Systems,” IEEE Sensors Journal, vol. 14, no. 8, pp.14765-14785, 2014. [27] W. K. Lee, H. Yoon, C. Han, K. M. Joo, and K. S. Park, “Physiological Signal Monitoring Bed for Infants Based on Load-Cell Sensors,” IEEE Sensors Journal, vol. 16, no. 3, pp. 409, 2016. [28] A. M. Adami, M.Pavel, T. L. Hayes, A. G. Adami, and C. Singer, “A Method for Classification of Movements in Bed,” Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, Massachusetts, 2011, pp. 7881-7884. [29] T. X. Chen, R. S. Hsiao, C. H. Kao, H. P. Lin, S. S. Jeng, and D. B. Lin, “Vision-Assisted Human Motion Analysis for Bed Exit Prediction Model Construction,” Proceedings of the 2017 International Conference on Innovation, Communication and Engineering (ICICE2017), Kunming, Yunnan Province, P. R. China, 2017. [30] H. Madokoro, N. Shimoi, and K. Sato, “Unrestrained Multiple-Sensor System for Bed-Leaving Detection and Prediction,” Nursing and Health, vol. 3, no. 3, pp. 58-68, 2015. [31] H. Madokoro , N. Shimoi and K. Sato, “Unrestrained multi-sensor systems for real-time prediction of bed-leaving behavior patterns,” Proceedings of the SICE Annual Conference (SICE), Sapporo, Japan, 2014, pp. 1946-1953. [32] H. Madokoroh, K. Kakuta, R. Fujisawa, N. Shimoi, K. Sato and L. Xu, “Bed-Leaving Behavior Detection and Recognition Based on Time-Series Learning Using Elman-Type Counter Propagation Networks,” Proceedings of the 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), Seoul, South Korea, 2014, pp. 540-545. [33] K. Bressler, R. E. Redfern, and M. Brown, “Elimination of position-change alarms in an Alzheimer’s and dementia long-term care facility,” American journal of Alzheimers disease and other dementias, vol. 26, no. 8, pp. 599-605, 2011. [34] D. C. Ranasinghe, R. L. S. Torres, and A. Wickramasinghe, “Automated activity recognition and monitoring of elderly using wireless sensors: Research challenges,” in 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), 2013, pp. 224-227. [35] K. H. Wolf, K. Hetzer, H. M. Schwabedissen, B. Wiese, and M. Marschollek, “Development and pilot study of a bed-exit alarm based on a body-worn accelerometer,” Zeitschrift für Gerontologie und Geriatrie, vol. 46, no. 8, pp. 727-733, 2013. [36] A. Wickramasinghe, D. C. Ranasinghe, C. Fumeaux, K. D. Hill, and R. Visvanathan, “Sequence Learning with Passive RFID Sensors for Real Time Bed-egress Recognition in Older People,” IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 4, pp. 917-929, 2017. [37] R. L. S. Torres, D. C. Ranasinghe, Q. Shi, and A. P. Sample, “Sensor enabled wearable RFID technology for mitigating the risk of falls near beds,” Proceedings of 2013 IEEE International Conference on RFID (RFID), Penang, Malaysia, 2013, pp. 191-198. [38] D. C. Ranasinghe, R. S. Torres, K. Hill, and R. Visvanathan, “Low cost and batteryless sensor-enabled radio frequency identification tag based approaches to identify patient bed entry and exit posture transitions,” Gait & Posture, vol. 39, no. 1, pp. 118-123, 2014. [39] R. L. S. Torres, R. Visvanathan, S. Hoskins, A. Hengel, and D. C. Ranasinghe, “Effectiveness of a batteryless and wireless wearable sensor system for identifying bed and chair exits in healthy older people,” IEEE Sensors Journal, vol. 16, no. 4, pp. 546-562, 2016. [40] G. Demiris, B. K. Hensel, M. Skubic, and M. Rantz, “Senior residents’ perceived need of and preferences for “smart home” sensor technologies,” International journal of technology assessment in health care, vol. 24, no. 1, pp. 120-124, 2008. [41] M. Gövercin, Y. Költzsch, M. Meis, S. Wegel, M. Gietzelt, J. Spehr, S. Winkelbach, M. Marschollek, and E. Steinhagen-Thiessen, “Defining the user requirements for wearable and optical fall prediction and fall detection devices for home use,” Informatics for health and social care, vol. 35, no. 3-4, pp. 177-187, 2010. [42] M.Yu, A. Rhuma, S. M. Naqvi, L. Wang, and J. Chamber, “A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment,” IEEE Trans on information technology in biomedicine, vol. 16, no. 6, pp.1274-1286, 2012. [43] Y. S. Delahoz, and M. A. Labrador, “Survey on fall detection and fall prevention using wearable and external sensors,” IEEE Sensors Journal, vol. 14, no. 10, pp. 19806-19842, 2014. [44] A. M. Adami, A. G. Adami, G. Schwarz, Z. T. Beattie, and T. L. Hayes, “A Subject State Detection Approach to Determine Rest-Activity Patterns Using Load Cells,” Proceedings of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 2010, pp. 204-207. [45] Z. T. Beattie , C. C. Hagen, and T. L. Hayes, “Classification of lying position using load cells under the bed,” Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 2011, pp. 474-477. [46] D. Austin, Z. T. Beattie , T. Riley, A. M. Adami, C. C. Hagen, and T. L. Hayes, “Unobtrusive classification of sleep and wakefulness using load cells under the bed,” Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 2012, pp.5254-5257. [47] K. Hirasawa, N. Matsumura, M. Motegi, T Yamada, S. Muto, N. Kanamaru, K. Shimokura, M. Abe, Y. Morita, and K. Kasai, “Analyzing Rising Patterns of Patients to Prevent Bed-related Falls. -First Report-,”日本医療マネジメント学会雑誌, vol. 11, no. 1, pp. 31-36, 2010. [48] M. Motegi, N. Matsumura, T. Yamada, S. Muto, N. Kanamaru, K. Shimokura, M. Abe, Y. Morita, and K. Kasai,” Analyzing Rising Patterns of Patients to Prevent Bed-related Falls. -Second Report-,”日本医療マネジメント学会雑誌, vol. 12, no. 1, pp. 25-29, 2011. [49] H. Madokoro, N. Shimoi, and K. Sato, “Unrestrained Multiple-Sensor System for Bed-Leaving Detection and Prediction,” Nursing and Health, vol. 3, no. 3, 2015, pp. 56-68. [50] H. Madokoro, N. Shimoi, and K. Sato, “Unrestrained multi-sensor systems for real-time prediction of bed-leaving behavior patterns,” Proceedings of the SICE Annual Conference (SICE), Sapporo, Japan, 2014, pp. 1946-1953. [51] H. Madokoro, K. Kakuta, R. Fujisawa, N. Shimoi, K. Sato, and L. Xu, ” Bed-leaving behavior detection and recognition based on time-series learning using Elman-Type Counter Propagation Networks Sign In or Purchase,” Proceedings of the 14th International Conference on Control, Automation and Systems (ICCAS 2014),” Seoul, South Korea, 2014, pp. 540-545. [52] P. Kulkarni, Reinforcement and Systemic Machine Learning for Decision Making: N.J., Hoboken, Canada, 2012. [53] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, 1967, pp.281-296. [54] A. David, and S. Vassilvitskii, “k-means++: The Advantages of Careful Seeding,” SODA ‘07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 1027–1035. [55] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov models,” IEEE ASSP Magazine, vol. 3, pp. 4-16, January, 1986. [56] HT Sensor, “TAS606 Button type compression load cell,” [Online]. Available: http://www.htc-sensor.com/products/151.html [57] Texas Instruments, “INA12x Precision, Low-Power Instrumentation Amplifiers,” [Online]. Available: http://www.ti.com/lit/ds/symlink/ina129.pdf [58] T. Sato, S. Nukaya, H. Tanaka, and T. Hiroyasu, “Patient behavior estimating system on the bed using a combination waveform with the piezoelectric ceramic sensors,”人工知能学会全国大会論文集, vol. 29, pp. 1-3, 2015. [59] D. M. W. Powers, “Evaluation: from precision,recall and f-measure to roc, informedness, markedness and correlation,” Journal of Machine Learning Technologies, vol. 2, pp.37-63, 2011. [60] I. H. Witten, E. Frank, and M.A. Hall, Data Mining - Practical Machine Learning Tools and Techniques, 3rd ed. Burlington, MA: Morgan Kaufmann, 2011. [61] V. Labatut and H. Cherifi, "Accuracy Measures for the Comparison of Classifiers,” ArXiv Preprint arXiv: 1207.3790, 2012.
|