跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鵬翔
研究生(外文):Peng Siang Wang
論文名稱:銦摻雜氧化鋅之奈米結構應用於染料敏化太陽能電池的高溫德拜行為
論文名稱(外文):The high temperature Debye behavior of DSSCs with indium-doped ZnO nanostructures
指導教授:倪澤恩
指導教授(外文):T. E. Nee
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:63
中文關鍵詞:氧化鋅染料敏化太陽能電池光學特性德拜模型
外文關鍵詞:ZnODye Sensitized Solar Celloptical propertiesDebye model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
由於氧化鋅(ZnO)具有獨特的性質使得它可以使用在許多不同方面的應用,氧化鋅在近年來已成為了熱門的研究材料之一。氧化鋅擁有寬大的能隙(3.37 eV)和大的激子結合能(60 meV),因此在光電子及元件中經常使用氧化鋅來當作其材料,如固態照明的白光和紅光和太陽能電池的透明電極材料。氧化鋅為n-type的本質半導體,利用摻雜的方式來改變氧化鋅的發光特性。本論文利用簡易的水熱法方式,在ITO基板上成長銦摻雜的氧化鋅奈米結構,並吸附染料(N-719)後封裝成染料敏化太陽能電池(Dye Sensitized Solar Cell)。
實驗藉由X射線繞射(X-ray diffraction)、掃描式電子顯微鏡(Scanning electron microscope)和太陽光模擬器來量測氧化鋅奈米結構的光電特性和染料電池的光電轉換效率。此外,我們也藉由變溫光激發光(photoluminescence , PL)量測氧化鋅奈米結構;利用這些量測工具來得知晶體結構上的不同會影響到元件特性,並且利用德拜模型來分析結構的不同是如何影響元件特性。

Zinc oxide (ZnO) has the unique nature and various application. ZnO is a distinct kind of metal oxide semiconductor with a wide direct-band gap of 3.37 eV and large exciton binding energy (60 meV). Therefore it is appropriate to produce the opto-electronic applications, such as solid state lighting and solar cells. ZnO is the n-type intrinsic semiconductor, so we used the other way to change ZnO optical character by doping.
In this experiment, we used the simple hydrothermal method to grow indium-doped ZnO nanostructure on indium tin oxide glass(ITO). Then the sample were respective by immersing in N-719 dye solution and further make the dye-sensitized solar cell application. We analyzed structure, optical characteristics of the ZnO nanomaterials, and its ability to convert solar energy to electrical energy in the DSSC by using the X-ray diffraction (XRD), scanning electron microscope (SEM) and the solar simulator. In addition, we also studied the photovoltaic performances of ZnO nanostructured films in different temperature by using photoluminescence (PL) spectra. We use these measuring instruments to know that the different nano structures will effect different device characteristic, and we analysis Debye temperature to find out how different nsno structure effect different device characteristic.

目錄
指導教授推薦書
口試委員會審定書
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 -1-
1-1前言 -1-
1-2氧化鋅相關製程文獻 -2-
1-2-1化學氣相沉積法 -3-
1-2-2電子束蒸鍍法 -3-
1-2-3模板法 -3-
1-2-4溶膠凝膠法... -4-
1-2-5水熱法 -4-
1-3研究動機 -5-
第二章 理論與實驗 -6-
2-1氧化鋅基本特性 -6-
2-2實驗步驟流程 -8-
2-3掃描電子顯微鏡(SEM) -10-
2-4 X光繞射儀器(XRD) -11-
2-5能量散射光譜儀原理(EDS) -11-
2-6 太陽光模擬器 -12-
2-7光激發螢光量測原理(Photoluminescence) -12-
2-8 德拜比熱理論 (Debye’s theory of specific heat) -13-
第三章 實驗結果與討論 -20-
3-1掃描式電子顯微鏡分析 -20-
3-1-1 SEM分析 -20-
3-1-2 EDS分析 -20-
3-2 X光繞射(XRD)分析 -21-
3-2-1摻雜銦之氧化鋅奈米結構 -21-
3-3太陽能效率量測 -21-
3-4光激發光量測分析 -22-
3-4-1變溫光激發光半高寬分析 -23-
3-4-2變溫光激發螢光峰值能量分析 -23-
3-5 德拜溫度分析 -24-
3-6 費米能階分析 -27-
第四章 結論 -45-
參考文獻 -46-


圖目錄
圖2-1氧化鋅六方纖維鋅礦結構 -15-
圖2-2氧化鋅立方閃鋅礦結構 -16-
圖2-3染料敏化太陽能電池結構 -17-
圖2-4 實驗流程 -18-
圖2-5 XRD之布拉格定律示意圖 -19-
圖3-1 SEM 分析(在ITO 基板上成長時間為一至四小時於倍率一萬下的銦摻雜氧化鋅結構) -29-
圖3-1 XRD 分析(在ITO 基板上成長時間為一至四小時之銦摻雜於氧化鋅結構) -30-
圖3-3-1 染料敏化太陽能電池常溫之電流-電壓圖 -31-
圖3-3-2染料敏化太陽能電池高溫(120 °C)之電流-電壓圖 -32-
圖3-3-3 染料敏化太陽能電池之效率圖 -33-
圖3-4-1 氧化鋅之PL光譜圖 -34-
圖3-4-2 銦參雜氧化鋅半高寬與溫度關係圖 -35-
圖3-4-3 銦參雜氧化鋅峰值能量與溫度關係圖 -36-
圖3-5-1 氧化鋅薄膜成長時間與德拜溫度關係圖 -37-
圖3-5-2 氧化鋅薄膜成長時間與光子-聲子鍵結能量關係圖 -38-
圖3-5-3 氧化鋅薄膜變溫光激發螢光量測與德拜溫度的關係圖 -39-
圖3-6-1 銦摻雜氧化鋅之費米能階圖 -40-
圖3-6-2 銦摻雜氧化鋅費米能階-德拜溫度與彈性係數於費米-狄拉克分布(Fermi-Dirac distribution)圖 -41-


表目錄
表3-1 EDS成份分析銦摻雜氧化鋅結構參數表 -42-
表3-2銦摻雜氧化鋅之不同成長時間的效率參數表 -43-
表3-3銦摻雜氧化鋅之不同溫度下的效率參數表 -44-





[1] A. Choi, K. Kim, H. Jung, and S. Y. Lee, "ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode", Sens. Actuators B. 148, pp.577-582, 2010.
[2] M. A. Lopez, M. Peiteado, J. F. Fernandez, A. C. Caballero, J. Holc, S. Dmovsek, D. Kuscer, S. Macek, and M. Kosec, "Thick film ZnO based varistors prepared by screen printing", J. Eur. Ceram. 26, 2006, pp. 2985-2989.
[3] W. K. Tan, Z. Lockman, K. A. Razak, G. Kawamura, H. Muto, and A. Matsuda, "Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction", Int. J. Hydrogen Energy 37, pp.1992-2000, 2013.
[4] J. H. Lee, and B. O. Park, "Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method", Thin Solid Films, 426, 2003, pp.94-99.
[5] Z. W. Dong, C. F. Zhang, H. Deng, G. J. You, and S. X. Qian, "Raman spectra of single micrometer-sized tubular ZnO", Mater. Chem. Phys. 9, pp.160-163, 2006.
[6] J. G. Galvan, I. M. Jimenez, H. Huitle, L. A. Hernandezd, F. d. M-Flores, A. Hernandez, E. Gonzalez, , A. Cervantes, O. Angel, and J. J. Ibarra, "Effect of precursor solution and annealing temperature on the physical properties of Sol–Gel-deposited ZnO thin films", Res. Phys. 3, pp.248-253, 2013.
[7] C. Ristoscu, C. Ducu, G. Socol, F. Craciunoiu, and I. N. Mihailescu, "Structural and optical characterization of AlN films grown by pulsed laser deposition", Appl. Surf. Sci. 248, pp.411-415, 2005.
[8] L. Wu, Y. Wu, X. Pan, and F. Kong, "Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property", Opt. Mater. 28, pp.418-422, 2006.
[9] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, "Temperature dependence of excitonic luminescence from nanocrystalline ZnO films", J. Lumin. 99, pp.149-154, 2002.
[10] C. C. Lin, H. P. Chen, and S. Y. Chen, "Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film/Si wafer in aqueous solutions", Chem. Phys. Lett. 404, pp.30-34, 2005.
[11] J. X. Yu, B. B. Huang, X. Y. Qin, X. Y. Zhang, Z. Y. Wang, and H. X. Liu, "Hydrothermal synthesis and characterization of ZnO films with different nanostructures", Appl. Surf. Sci. 257, pp.5563-5565, 2011.
[12] S. Y. Gao, D. G. Li, Y. G. Li, X. Y. Lu, J. Z. Wang, H. T. Li, Q. J. Yu, F. G. Guo, and L. C. Zhao, "Growth and characterization of ZnO nanorod arrays on boron-doped diamond films by low temperature hydrothermal reaction", J. Alloys Compd. 539, pp.200-204, 2012.
[13] B. H. Choi, H. B. ImJ. S. Song, and K. H. Yoon, "Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering", Thin Solid Films 193, pp.712-720, 1900.
[14] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization," J. Appl. Phys. 84, pp.3912, 1998.
[15] Z. Zhou, "A new method for preparation of zinc oxide whiskers", Mater. Res. Bull. 34, pp.1563, 1999.
[16] R. A. Swalin, "Thermodynamics of solids", J. Eur. Ceram. 6, pp.156-158, 1972.
[17] Z. H. Huepkes, J. E. Owen, and J. Huang, "Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells", Sol. Energy Mater. Sol. Cells 95, pp. 964-968, 2011.
[18] A. E. Hichou, M. Addou, J. Ebothe, and M. Troyon, "Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysis", J. Lumin. 113, pp.183, 2005.
[19] B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates", Appl. Phys. Lett. 79, pp.943, 2001.
[20] L. Wu, Y. Wu, X. Pan, and F. Kong, "Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property", Opt. Mater. 28, pp.418-422, 2006.
[21] V. Prassd, C. Souza, D. Yadav, A. J. Shaikh, and N.Vigneshwaran, "Spectroscopic characterization of Zinc oxide nanords synthesized by solid -state reaction ", Spectrochim. Acta 65, pp.173-178, 2006.
[22] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, M. A. Verges, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders", J. Appl. Phys. 79, pp.7983, 1996.
[23] J. B. Baxter, and E. S. Aydil, "Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires", Sol. Energy Mater. Sol. Cells 90, pp.149-154, 2002.
[24] Y. Zhou, C. Liu, M. Li, H. Wu, X. Zhong, D. Li, and D. Xu, "Fabrication and optical properties of ordered sea urchin-like ZnO nanostructures by a simple hydrothermal process", Mater. Lett. 106, pp.94-96, 2013.
[25] S. E. Rock, X. Shi, J. E. Garland, and D. Roy, "Experimental considerations for temperature controlled measurements of fast charge recombination times in dye sensitized solar cells using open circuit voltage decay and impedance spectroscopy", Meas. Sci. Technol. 53, pp.71-82, 2014.
[26] E. Elangovan, K. G. Kanade, L. Wu, and A. Toumiat, "Preliminary studies on molybdenum –doped indium oxide thin films deposited by radio-frequency magnetron sputtering at room temperature", Thin Solid Films. 515, pp.5512-5518, 2007.
[27] Y. C. Lee, S. Y. Hu, and W. Water, "The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by RF reactine sputtering", Thin Solid Films. 199, pp.223-230, 1991.
[28] W. C. Yang, C. W. Wang, J. C. Wang, Y. C. Chang, H. C. Hsu, Tzer-En Nee, L. J. Chen, and J. H. He, "Aligned Er-doped ZnO nanorod arrays with enhanced 1.54 um infrared emission", J. Nenosci. Res. 8, pp.3363, 2008.
[29] Y. S. Chen, and T. Y. Tseng, "Optical properties of Ce-doped ZnO nanowires directionally grown by hydrothermal method", J. Nenosci. Res. 8, pp.4514, 2008.
[30] U. Pal, J. G. Serrano, P. Santiago, R. Williams, G. Xiong, and K. B. Ucer, "Electroluminescence from ZnO nanowires with a p-ZnO film/n-ZnO nanowires homojunction", Appl. Phys. B. 90, pp.543, 2008.
[31] W. Clegg, "Crystal Structure Determination", Oxford University Press, 1988.
[32] D. C. Look, S. W. Xue, L. Yang, and Y. Zhang, "Fabrication of ZnO based metal insulator semiconductor diodes by ion implantation", Solid-State Electron. 48, pp.2343-2346, 2004.
[33] M. Kira, and S. Koch, "Semiconductor Quantum Optics", Cambridge University Press, 2011.
[34] 倪澤恩著,《基礎固態物理》,台灣,五南出版社,民國一百年。
[35] A. B. Djurisic, Y. H. Leung, and K. H. Ta, "Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength", Appl. Phys. Lett. 88, pp.103-107, 2006.
[36] X. M. Fan, J. S. Lian, L. Zhao, and Y. H. Liu, "Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass", Appl. Surf. Sci. 2, pp.252, 2005.
[37] Z. Huang, C. Chai, and B. Cao, "Temperature dependent emission shifts of peanutlike ZnO Microrods Synthesized by a Hydrothermal method", Cryst. Growth Des. 7, pp.9, 2007.
[38] Bixia Lin, Zhuxi Fu, Yunbo Jia, and Guihong Liao, " Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions",J. Electrochem.Soc , 148 (3) G110-G113 2001
[39] R. H. Bube, "Photoconductivity and crystal imperfections in cadmium sulfide crystals.Part II.Determination of characteristic photoconductivity quantities",J. Chem.Phys. 23,pp. 18 195

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊