跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林經展
研究生(外文):Ching-Chan Lin
論文名稱:新鈍氣陰離子、生命起源之核醣合成與OSO和SOO分子的理論研究
論文名稱(外文):Theoretical Study on new Noble Gas Anions, Prebiotic Synthesis of Ribose, and the OSO and SOO molecules
指導教授:胡維平
指導教授(外文):Wei-Ping Hu
口試委員:莊曜遠魏台輝
口試委員(外文):Yao-Yuan ChuangTai-Huei Wei
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:197
中文關鍵詞:鈍氣陰離子核醣
外文關鍵詞:ribosenoble gas anion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本篇碩士論文共分為五章,前三章是探討含金屬、過渡金屬的鈍氣陰離子的穩定性,第四章是探討生命出現以前 ( prebiotic ) 的中性環境中經由 formose reaction 合成 glyceraldehyde 與 dihydroacetone的反應機制。我們除了考慮在氣態環境下的反應外,也使用了微水合模型 (microsolvation model) 以及PCM 模型 (polarizable continuum model) 來模擬溶劑效應對反應的影響。第五章則是研究與O3 等電子數的OSO 與SOO分子的異構化及分解反應機制。
第一章中我們以理論方法計算一系列 X−NgO ( X = OBO, OAlO, NCO, OCN, NC, OAg…等) 鈍氣陰離子的結構、穩定能與S-T gap 。我們發現許多陰離子對 NgO 有著相似的極化能力,而這些陰離子的穩定性與X的電子親和力( EA )有相當大的關係,其EA值較大通常鈍氣陰離子的穩定較高。計算結果顯示OMO−NgO ( Ng=Ar, Kr, Xe;M=Al, B ) 鈍氣陰離子皆有很高的分解穩定能,可在低溫下穩定存在。
在第二章我們以理論方法計算OMO−( NgO )n ( Ng= Ar, Kr, and Xe ; M=Al , B;n =1~2 ) 鈍氣陰離子的幾何結構、穩定能與電荷分布。我們發現這些鈍氣陰離子有高度的對稱性。我們認為此類型陰離子的穩定度來自charge-induced Ng=O鍵的生成,而數個NgO配位單元可同時在 OMO 陰離子周圍產生更高的結合能。
在第三章中我們以理論計算尋找可能穩定且含有過渡金屬的鈍氣陰離子。以往發現穩定的鈍氣陰離子都是單重態,在這章的研究中我們想利用過渡金屬具有3d 軌域的特性,尋找有不同自旋態且穩定的鈍氣陰離子。計算結果中我們發現,釩的氧化物與氬氣可形成 OVOO−ArO 且在單重態下可以穩定存在;鈷的氧化物與氬氣可形成OCoOO−ArO 且在三重態下可以穩定存在。我們也使用多種不同的 DFT 方法計算過渡金屬氧化物( OMOO− )的電子親和力( EA值)並與實驗值比較,選擇較適當的DFT 方法。
在第四章中我們探討生命起源前 (prebiotic) ,藉由水與氨分子催化的formose reaction合成 glyceraldehyde 與 dihydroacetone的反應機制。我們以MP2/6-311+G(d,p) 理論方法搭配微水合 (microsolvation )計算溶劑效應,結果顯示在 H2O 的催化下經過一個質子轉移 (proton relay) ,formaldehyde合成glycolaldehyde的反應能障會下降20 ~ 30 kcal/mol,同樣的在 NH3 的催化下也可以觀察到類似的結果。如果同時加入 PCM model來計算溶劑效應,formaldehyde合成glycolaldehyde的反應能障可以更進一步的下降 3~5 kcal/mol , 使formose reaction 更容易進行。
在第五章中我們研究與 O3 等電子化合物SOO 與 OSO。我們以高階理論方法如 CASPT2、MRCISD+Q 等計算SOO與 OSO的結構及能量,探討 SOO與OSO是否存在 cyclic form,並且比較 open form 和 cyclic form 兩種結構的相對能量。我們以MRCISD+Q//UB3LYP/aug-cc-pVTZ 理論方法計算cyclic-OSO、open -OSO與open -SOO等分子的單點能量,並計算open -OSO 與 SOO 的第一個Singlet激發態 (1A" )以及基態(1A' )的位能曲面。研究結果顯示 open-OSO 從基態結構被激發後可能經由1A' 與 1A" 位能曲面的交會形成open-SOO ,因為在open-OSO → open-SOO反應中,transition state的基態與激發態的過渡態能量幾乎是簡併的。計算結果也顯示open-OSO 不易轉變成cyclic-OSO,原因是在open-OSO → cyc-SOO 反應中,基態與激發態的過渡態能量差異約11 kcal/mol,因此open-OSO 被激發後不會經過交會點形成cyclic-SOO。此外open-OSO 分解成 SO + O 與S + O2 ,能量分別為149.6 kcal/mol 與145.2 kcal/mol 。於是我們推測 open-OSO 與 open-SOO可能穩定存在,cyclic-OSO則可能無法穩定存在。

This thesis consists of five chapters. In chapters 1 and 2, we studied the stability of some metal-containing noble-gas anions. In chapter 3, we studied the stability of transition metal-containing noble-gas anions. In chapter 4, we studied the prebiotic synthesis of glyceraldehyde and dihydroacetone by formose reaction in neutral environment. In addition to the gas-phase study, we also model the solvation effects with two different approaches, micro-solvation and polarizable continuum model (PCM). In chapter 5, we studied the stability of various OSO isomers and their isomerization and dissociation reactions.
In Chapter 1, we calculated the geometry and stability of a series of noble-gas anions X−NgO ( X = OBO, OAlO, NCO, OCN, NC, OAg, and etc) by ab initio methods . The anions can induce theformation of the NgO bond by polarization. We found that the stability of X−NgO depended strongly on the electron affinity of the neutral species X. Usually the X with higher electron affinity can form more stable X−NgO anions. The calculated results showed that the OMO−NgO ( Ng=Ar , Kr, Xe ; M=Al , B) anions which has high dissociation energy may be experimentally detectable in low-temperature conditions.
In Chapter 2, we have calculated the molecular geometries, bond energies, and charge distribution of the metal-containing noble-gas anions OMO−(NgO )n ( Ng= Ar, Kr, and Xe ; M=Al , B;n =1~2 ). The geometries of these anions were found to be highly symmetric. The calculated results revealed that the OMO−( NgO )n ( Ng= Ar, Kr, and Xe ; M=Al , B;n =1~2 ) anions may be experimentally detectable at low-temperature. We also calculated the OArOMOKr−, OArOMOXe−, and OKrOMOXe− (M=Al , B) anions which has high dissociation energy may be experimentally detectable in low-temperature conditions.
In Chapter 3, we have calculated the molecular geometries and the stability of the transition metal-containing noble-gas anions OMOO−ArO (M = Ti, V, Co, Cu). The stable noble-gas anions previously studied were all in singlet states. It is expected that the stable noble-gas anions could exist in different spin states by including 3d transition metal elements. The calculated results showed that the stable anion OVOO−ArO was in singlet state and the stable anion OCoOO−ArO was in the triplet state. We also used various DFT methods to calculate electron affinities of OMOO− (M = Ti, V, Co, Cu) and compared them to experimental results.
In Chapter 4, we studied the the prebiotic synthesis of glyceraldehyde and dihydroacetone, which are precursors of ribose, by formose reaction. The possible reaction pathways of synthesis for glyceraldehyde and dihydroacetone from formaldehyde were calculated in the gas phase, in bulk solvent, and with microsolvation by H2O or NH3 molecules. We found that if a reaction step involves a proton transfer, the energy barrier could be significantly reduced by approximately 20 ~ 30 kcal/mol with microsolvation by H2O or NH3. The polarized continuum solvation model (PCM) could sometimes further lower the barrier by 3~5 kcal/mol. So the formose reaction can occurs more readily in comparison with the reactions in the gas phase.
In chapter 5, we studied the molecules OSO and SOO which are isoelectronic to the ozone. The high level methods, CASPT2, MRCISD+Q, were used to calculate the relative energies of the cyclic and the open forms of OSO. The first singlet excited state (1A" state) and the ground state (1A' state) potential energy surfaces were calculated. The result showed that when the ground state open-OSO was excited by radiation, it would become open-SOO through the cross section of 1A' and 1A" potential energy surfaces because of the near-degeneracy of ground and excited transition states. However, the reaction open-OSO → cyclic-SOO would not likely to occur through the intersection of the potential energy surfaces. The dissociation energies of reactions open-OSO → SO + O and S + O2 are 149.6 kcal/mol and 145.2 kcal/mol.

總目錄.. i
中文摘要 I
Abstract IV
第一章 穩定鈍氣陰離子OMO−NgO (Ng=Ar, Kr, Xe; M=Al ,B) 的理論預測 1
摘要 1
1.1 前言 2
1.2 計算方法 3
1.3 結果與討論 5
1.3.1 鈍氣陰離子總體穩定性探討 5
1.3.2 AlO−NgO 鈍氣陰離子能量的穩定性探討 8
1.3.2.1 AlO−NgO 鈍氣陰離子能量的結構比較 11
1.3.3 OAlO−NgO 鈍氣陰離子能量的穩定性探討 12
1.3.3.1 OAlO−NgO 鈍氣陰離子能量的結構比較 14
1.3.4 OBO−NgO 鈍氣陰離子的穩定性探討 15
1.3.3.1 OBO−NgO 鈍氣陰離子能量的結構比較 17
1.4 結論 18
1.5 參考文獻 19
1.6 Tables and Figures 21
第二章 穩定鈍氣陰離子OMO−( NgO )n ( Ng=Ar, Kr, and Xe; M=Al , B;n =1~2 ) 的理論預測 46
摘要 46
2.1前言 47
2.2計算方法 49
2.3結果與討論 50
2.3.1 結構比較與對稱性探討 50
2.3.2 能量的穩定性探討 51
2.4 結論 54
2.5 參考文獻 55
2.6 Tables and Figures 57
第三章 含過渡金屬之穩定鈍氣陰離子OMOO−ArO ( M = Ti, V, Co, Cu ) 的理論預測 66
摘要 66
3.1 前言 67
3.2 計算方法 69
3.3 結果與討論 71
3.3.1 OTiOO−NgO 鈍氣陰離子的穩定性探討與結構比較 71
3.3.2 OVOO−NgO 鈍氣陰離子的穩定性探討與結構比較 73
3.3.3 OCoOO−NgO 鈍氣陰離子的穩定性探討與結構比較 74
3.3.4 OCuOO−NgO 鈍氣陰離子的穩定性探討與結構比較 76
3.4 結論 78
3.5 參考文獻 79
3.6 Tables and Figures 82
第四章 生命起源之合成Glyceraldehyde 與 Dihydroacetone並藉由微水合催化的理論研究 錯誤! 尚未定義書籤。
摘要 110
4.1前言 111
4.2計算方法 114
4.3結果與討論 116
4.3.1 formaldehyde合成 glycolaldehyde 的反應機制與相對能量 116
4.3.1.1 formaldehyde合成 glycolaldehyde 的結構比較 119
4.3.2 glycolaldehyde合成glyceraldehyde 的反應機制與相對能量 121
4.3.2.1 glycolaldehyde合成 glyceraldehyde 的結構比較 123
4.3.3 glycolaldehyde合成 dihydroacetone 的反應機制與相對能量 125
4.3.3.1 glycolaldehyde合成 dihydroacetone 的結構比較 127
4.3.4 glycolaldehyde 經由 1,2-ethenediol合成glyceraldehyde 的反應機制與相對能量 129
4.3.4.1 glycolaldehyde 經由 1,2-ethenediol合成glyceraldehyde 的結構比較 131
4.4 結論 133
4.5 參考文獻 134
4.6 Tables and Figures 136
第五章 等電子OSO和SOO分子的理論研究 169
摘要 169
5.1前言 170
5.2計算方法 171
5.3 結果與討論 172
5.3.1 Cyclic-OSO、Open-OSO與Open-SOO 的反應機制與相對能量 172
5.3.2 Cyclic-SOS、Open-SOS與Open-SSO 的相對能量與結構比較 174
5.4 結論 175
5.5 參考文獻 176
5.6 Tables and Figures 179


1.Lewis, G. N. J. Am. Chem. Soc. 1916, 38. 762.
2.Liu, D. J.; Ho, W. C.; Oka, T. J. Chem. Phys. 1987, 87. 2442.
3.Christe, K. O.; Schrobilgen, G. J. J. Am. Chem. Soc. 1991, 113, 3351.
4.Michelle A, M. F.; Roderick E, W.; Michael, G.; Schrobilgen, G.-J. Inorg. Chem. 2007, 46, 3585.
5.Christe, K. O.; Wilson, W. W. Inorg. Chem. 1988, 27, 3763.
6.Li, T. H.; Mou, C. H.; Chen, H. R.; Hu, W. P. J. Am. Chem. Soc. 2005, 127, 9241.
7.Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
8.Pople, J. A.; Head‐Gordon, M.; Raghavachari, K. J. Chem. Phys.1987, 87, 5968.
9.(a) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R.A.; Dunning, T. H., Jr. J. Chem. Phys. 1992, 96, 6796. (c) Woon, D.E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358. (d) Wilson, A.K.; Woon, D. E.; Peterson, K. A.; Dunning, T. H., Jr. J. Chem. Phys.1999, 110, 7667.
10.Peterson, K-A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113.
11.Gaussian 09, Revision D.1, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C. Iyengar, S. S. Tomasi, J. Cossi, M. Rega, Millam, N. J., Klene, M. Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J., Gaussian, Inc., Wallingford CT, 2009.
12.Li, T. H.; Liu, Y. L.; Lin, R. J.; Yeh, T. Y.; Hu, W. P. Chem Phys Lett. 2007, 434, 38.
13.Lai, T. Y.; Yang, C. Y.; Lin, H. J.; Yang C. Y., Hu, W. P. J. Chem. Phy. 2011, 134, 244110.
14.Peng, C. Y.; Yang, C. Yu.; Sun, Y. L.; Hu, W. P. J. Chem. Phys. 2012, 139, 194303.
15.Liu, Y. L. PhD. Dissertation, National Chung Cheng University, 2006.
16.Lai, T. Y. MS. Dissertation, National Chung Cheng University, 2011.
17.Desai, S. R.; Wu, H.; Wang, L. S. Int. J. Mass Spectrom. Ion Proc., 1996, 159, 75.
18.Zhai, H. J.; Wang, L. M.; Li, S. D.; Wang, L.S. J. Phys. Chem. A, 2007, 111, 1030.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top