|
Abu Bakar, S. and C. Ribeiro (2016). An insight toward the photocatalytic activity of S doped 1-D TiO2 nanorods prepared via novel route: As promising platform for environmental leap. Journal of Molecular Catalysis A: Chemical 412: 78-92. Aghighi, A. and F. Haghighat (2015). Using physical–chemical properties of reactants to estimate the performance of photocatalytic oxidation air cleaners. Building and Environment 85: 114-122. Akhila, A. K., P. S. Vinitha and N. K. Renuka (2018). Photocatalytic Activity of Graphene – Titania Nanocomposite. Materials Today: Proceedings 5(8, Part 3): 16085-16093. Ali, M. H. H., A. D. Al-Afify and M. E. Goher (2018). Preparation and characterization of graphene – TiO2 nanocomposite for enhanced photodegradation of Rhodamine-B dye. The Egyptian Journal of Aquatic Research 44(4): 263-270. Ali, S., A. Razzaq and S. L. In (2018). Development of graphene based photocatalysts for CO2 reduction to C1 chemicals: A brief overview. Catalysis Today. Ambrosi, A., C. K. Chua, A. Bonanni and M. Pumera (2014). Electrochemistry of graphene and related materials. Chemical reviews 114(14): 7150-7188. Andrijanto, E., G. Subiyanto, N. Marlina, H. Citra and C. Lintang (2018). Preparation of Graphene Oxide Sand Composites as Super Adsorbent for Water Purification Application, EDP Sciences. Ang, T. P., J. Y. Law and Y. F. Han (2010). Preparation, characterization of sulfur-doped nanosized TiO 2 and photocatalytic degradation of methylene blue under visible light. Catalysis letters 139(1-2): 77-84. Aziz, M., F. S. A. Halim and J. Jaafar (2014). Preparation and Characterization of Graphene Membrane Electrode Assembly. Jurnal Teknologi 69(9). Bakar, S. A. and C. Ribeiro (2016). A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped TiO2 photocatalysts: A case study of possible sulfur doping through chemical protocol. Journal of Molecular Catalysis A: Chemical 421: 1-15. Barnes, I., K. H. Becker and N. Mihalopoulos (1994). An FTIR product study of the photooxidation of dimethyl disulfide. Journal of Atmospheric Chemistry 18(3): 267-289. Barnes, I., J. Hjorth and N. Mihalopoulos (2006). Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chemical reviews 106(3): 940-975. Belver, C., J. Bedia, A. Gómez-Avilés, M. Peñas-Garzón and J. J. Rodriguez (2019). Chapter 22 - Semiconductor Photocatalysis for Water Purification. Nanoscale Materials in Water Purification. S. Thomas, D. Pasquini, S.-Y. Leu and D. A. Gopakumar, Elsevier: 581-651. Bentley, M. D., I. B. Douglass, J. A. Lacadie and D. R. Whittier (1972). The photolysis of dimethyl sulfide in air. Journal of the Air Pollution Control Association 22(5): 359-363. Betancur, A. F., N. Ornelas-Soto, A. M. Garay-Tapia, F. R. Pérez, Á. Salazar and A. G. García (2018). A general strategy for direct synthesis of reduced graphene oxide by chemical exfoliation of graphite. Materials Chemistry and Physics 218: 51-61. Borrás, E., L. A. Tortajada-Genaro and A. Muñoz (2016). Determination of reduced sulfur compounds in air samples for the monitoring of malodor caused by landfills. Talanta 148: 472-477. Brindha, A. and T. Sivakumar (2017). Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. Journal of Photochemistry and Photobiology A: Chemistry 340: 146-156. Byrne, C., G. Subramanian and S. C. Pillai (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering 6(3): 3531-3555. Carlsson, J.-O. and P. M. Martin (2010). Chapter 7 - Chemical Vapor Deposition. Handbook of Deposition Technologies for Films and Coatings (Third Edition). P. M. Martin. Boston, William Andrew Publishing: 314-363. Ceballos-Chuc, M. C., C. M. Ramos-Castillo, J. J. Alvarado-Gil, G. Oskam and G. Rodríguez-Gattorno (2018). Influence of Brookite Impurities on the Raman Spectrum of TiO2 Anatase Nanocrystals. The Journal of Physical Chemistry C 122(34): 19921-19930. Chang, B. Y. S., N. M. Huang, M. N. An’amt, A. R. Marlinda, Y. Norazriena, M. R. Muhamad, I. Harrison, H. N. Lim and C. H. Chia (2012). Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. International journal of nanomedicine 7: 3379. Chen, C. B., J. Li, R. Li, G. Y. Xiao and D. Y. Yan (2013). Synthesis of superior dispersions of reduced graphene oxide. New Journal of Chemistry 37(9): 2778-2783. Chen, D. J., L. L. Zou, S. X. Li and F. Y. Zheng (2016). Nanospherical like reduced graphene oxide decorated TiO 2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Scientific reports 6: 20335. Chen, X., Z. L. Zhao, Y. Zhou, Q. L. Zhu, Z. Y. Pan and H. F. Lu (2018). A facile route for spraying preparation of Pt/TiO2 monolithic catalysts toward VOCs combustion. Applied Catalysis A: General 566: 190-199. Cheng, C. G., P. Jia, L. H. Xiao and J. X. Geng (2019). Tandem chemical modification/mechanical exfoliation of graphite: Scalable synthesis of high-quality, surface-functionalized graphene. Carbon 145: 668-676. Collazzo, G. C., S. L. Jahn, N. L. V. Carreño and E. L. Foletto (2011). Temperature and reaction time effects on the structural properties of titanium dioxide nanopowders obtained via the hydrothermal method. Brazilian Journal of Chemical Engineering 28(2): 265-272. Cui, C. N., J. T. Huang, J. H. Huang and G. H. Chen (2017). Size separation of mechanically exfoliated graphene sheets by electrophoresis. Electrochimica Acta 258: 793-799. Dai, C. H., Y. Y. Zhou, H. Peng, S. J. Huang, P. F. Qin, J. C. Zhang, Y. Yang, L. Luo and X. S. Zhang (2018). Current progress in remediation of chlorinated volatile organic compounds: A review. Journal of Industrial and Engineering Chemistry 62: 106-119. Dambournet, D., I. Belharouak and K. Amine (2009). Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chemistry of materials 22(3): 1173-1179. Damodar, R. A., S. J. You and H. H. Chou (2009). Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials 172(2): 1321-1328. Debono, O., F. Thévenet, P. Gravejat, V. Héquet, C. Raillard, L. Le Coq and N. Locoge (2013). Gas phase photocatalytic oxidation of decane at ppb levels: Removal kinetics, reaction intermediates and carbon mass balance. Journal of Photochemistry and Photobiology A: Chemistry 258: 17-29. Demeestere, K., J. Dewulf, B. D. Witte and H. Van Langenhove (2005). Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: Parameter study and reaction pathways. Applied Catalysis B: Environmental 60(1): 93-106. Dozzi, M. V. and E. Selli (2013). Doping TiO2 with p-block elements: Effects on photocatalytic activity. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 14: 13-28. Drewniak, S., R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska and M. Setkiewicz (2016). Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1): 103. Dubey, R. S. (2018). Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Materials Letters 215: 312-317. Eichler, D. R. and G. A. Papadantonakis (2017). Activation barriers for methylation of DNA bases by dimethyl sulfate. Chemical Physics Letters 689: 8-14. El-Sheikh, S. M., T. M. Khedr, G. Zhang, V. Vogiazi, A. A. Ismail, K. O’Shea and D. D. Dionysiou (2017). Tailored synthesis of anatase–brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV–Vis light. Chemical Engineering Journal 310: 428-436. Emiru, T. F. and D. W. Ayele (2017). Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences 4(1): 74-79. Etacheri, V., C. Di Valentin, J. Schneider, D. Bahnemann and S. C. Pillai (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25: 1-29. Fan, B. B., H. H. Guo, J. Shi, C. Y. Shi, Y. Jia, H. L. Wang, D. L. Chen, Y. J. Yang, H. X. Lu and H. L. Xu (2016). Facile one-pot preparation of silver/reduced graphene oxide nanocomposite for cancer photodynamic and photothermal therapy. Journal of Nanoscience and Nanotechnology 16(7): 7049-7054. Fan, X., J. Sun, W. L. Guo, X. X. Ke, C. L. Yan, X. J. Li, Y. B. Dong, F. Z. Xiong, Y. F. Fu, L. Wang, J. Deng and C. Xu (2019). Chemical vapor deposition of graphene on refractory metals: The attempt of growth at much higher temperature. Synthetic Metals 247: 233-239. Farhanian, D., F. Haghighat, C. S. Lee and N. Lakdawala (2013). Impact of design parameters on the performance of ultraviolet photocatalytic oxidation air cleaner. Building and Environment 66: 148-157. Filippo, E., C. Carlucci, A. L. Capodilupo, P. Perulli, F. Conciauro, G. A. Corrente, G. Gigli and G. Ciccarella (2015). Enhanced photocatalytic activity of pure anatase TiO2 and Pt-TiO2 nanoparticles synthesized by green microwave assisted route. Materials Research 18(3): 473-481. Fogler, S. (1999). H.,“Elements of Chemical Reaction Engineering Prentice-Hall. Inc., NJ. Ganguly, A., S. Sharma, P. Papakonstantinou and J. Hamilton (2011). Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. The Journal of Physical Chemistry C 115(34): 17009-17019. Gayathri, S., M. Kottaisamy and V. Ramakrishnan (2015). Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes. AIP Advances 5(12): 127219. Gereben, O., S. Kohara and L. Pusztai (2012). The liquid structure of some food aromas: Joint X-ray diffraction, all-atom molecular dynamics and reverse Monte Carlo investigations of dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide. Journal of Molecular Liquids 169: 63-73. Gharib, A., L. V. Fard, N. N. Pesyan and M. Roshani (2015). A new application of nano-graphene oxide (NGO) as a heterogeneous catalyst in oxidation of alcohols types. Chemistry 1(4): 151-158. Ghosh, S., D. Mandal and A. Chandra (2019). Effect of Laser Irradiation on Graphene Oxide Integrated TE-Pass Waveguide Polarizer. Journal of Lightwave Technology. Glassman, I., R. A. Yetter and N. G. Glumac (2015). Chapter 2 - Chemical kinetics. Combustion (Fifth Edition). I. Glassman, R. A. Yetter and N. G. Glumac. Boston, Academic Press: 41-70. Guillard, C., D. Baldassare, C. Duchamp, M. N. Ghazzal and S. Daniele (2007). Photocatalytic degradation and mineralization of a malodorous compound (dimethyldisulfide) using a continuous flow reactor. Catalysis Today 122(1): 160-167. Guo, W., C. Xu, K. Xu, J. Deng, W. L. Guo, A. Yurgens and J. Sun (2016). Rapid chemical vapor deposition of graphene on liquid copper. Synthetic Metals 216: 93-97. Gupta, B., N. Kumar, K. Panda, S. Dash and A. K. Tyagi (2016). Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties. Scientific reports 6: 18372. Gupta, S. M. and M. Tripathi (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin 56(16): 1639. Gupta, S. M. and M. Tripathi (2012). A review on the synthesis of TiO 2 nanoparticles by solution route. Central European Journal of Chemistry 10(2): 279-294. He, Y. Q., N. N. Zhang, F. Wu, F. Q. Xu, Y. Liu and J. P. Gao (2013). Graphene oxide foams and their excellent adsorption ability for acetone gas. Materials Research Bulletin 48(9): 3553-3558. Heck, R. M., R. J. Farrauto and S. T. Gulati (2009). Catalytic air pollution control: commercial technology, John Wiley & Sons. Hernández-Ramírez, A. and I. Medina-Ramírez (2014). Photocatalytic semiconductors: synthesis, characterization, and environmental applications, Springer. How, G. T. S., A. Pandikumar, H. N. Ming and L. H. Ngee (2014). Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Scientific reports 4: 5044. Hsu, D. J., Y. W. Chi, K. P. Huang and C. C. Hu (2019). Electrochemical activation of vertically grown graphene nanowalls synthesized by plasma-enhanced chemical vapor deposition for high-voltage supercapacitors. Electrochimica Acta 300: 324-332. Hu, L. S., X. Peng, Y. Li, L. Wang, K. F. Huo, L. Y. S. Lee, K. Y. Wong and P. K. Chu (2017). Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. Nano energy 34: 515-523. Hu, X. L., S. C. Lu, J. Tian, N. Wei, X. J. Song, X. Z. Wang and H. Z. Cui (2019). The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Applied Catalysis B: Environmental 241: 329-337. Hummers Jr, W. S. and R. E. Offeman (1958). Preparation of graphitic oxide. Journal of the American Chemical Society 80(6): 1339-1339. Hussain, M., N. Russo and G. Saracco (2011). Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chemical Engineering Journal 166(1): 138-149. Hussain, S. T., K. Khan and R. Hussain (2009). Size control synthesis of sulfur doped titanium dioxide (anatase) nanoparticles, its optical property and its photo catalytic reactivity for CO2+ H2O conversion and phenol degradation. Journal of Natural Gas Chemistry 18(4): 383-391. Jain, A. and D. Vaya (2017). Photocatalytic activity of TiO2 nanomaterial. Journal of the Chilean Chemical Society 62(4): 3683-3690. Jeong, H. K., Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae and Y. H. Lee (2009). Thermal stability of graphite oxide. Chemical Physics Letters 470(4): 255-258. Jo, W. K., S. H. Shin and E. S. Hwang (2011). Removal of dimethyl sulfide utilizing activated carbon fiber-supported photocatalyst in continuous-flow system. Journal of Hazardous Materials 191(1): 234-239. Johra, F. T., J. W. Lee and W. G. Jung (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry 20(5): 2883-2887. Kabir, E. and K. H. Kim (2012). Use of solid phase microextraction (SPME) in the analysis of the reduced sulfur compounds (RSC) and its experimental limitations. Microchemical Journal 103: 42-48. Kamal, M. S., S. A. Razzak and M. M. Hossain (2016). Catalytic oxidation of volatile organic compounds (VOCs) – A review. Atmospheric Environment 140: 117-134. Kamali, A. R. and D. J. Fray (2015). Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite. Nanoscale 7(26): 11310-11320. Kaplan, R., B. Erjavec, G. Dražić, J. Grdadolnik and A. Pintar (2016). Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Applied Catalysis B: Environmental 181: 465-474. Katsumata, K.-i., R. Motoyoshi, N. Matsushita and K. Okada (2013). Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. Journal of Hazardous Materials 260: 475-482. Kim, K. H., E. C. Jeon, Y. J. Choi and Y. S. Koo (2006). The emission characteristics and the related malodor intensities of gaseous reduced sulfur compounds (RSC) in a large industrial complex. Atmospheric Environment 40(24): 4478-4490. Kim, S. B., H. T. Hwang and S. C. Hong (2002). Photocatalytic degradation of volatile organic compounds at the gas–solid interface of a TiO2 photocatalyst. Chemosphere 48(4): 437-444. Korologos, C. A., C. J. Philippopoulos and S. G. Poulopoulos (2011). The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmospheric Environment 45(39): 7089-7095. Krishnamoorthy, K., M. Veerapandian, R. Mohan and S. J. Kim (2012). Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Applied Physics A 106(3): 501-506. Kumar, K. A., K. Subalakshmi and J. Senthilselvan (2019). Effect of co-sensitization in solar exfoliated TiO2 functionalized rGO photoanode for dye-sensitized solar cell applications. Materials Science in Semiconductor Processing 96: 104-115. Kumar, T. P., M. A. Rahul and B. Chandrajit (2011). Biofiltration of volatile organic compounds (VOCs): An overview. Res J Chem Sci 2231: 606X. Lai, C., X. X. Zhou, D. L. Huang, G. M. Zeng, M. Cheng, L. Qin, H. Yi, C. Zhang, P. Xu, C. Y. Zhou, R. Z. Wang and C. Huang (2018). A review of titanium dioxide and its highlighted application in molecular imprinting technology in environment. Journal of the Taiwan Institute of Chemical Engineers 91: 517-531. Lan, T. B., H. Y. Qiu, F. Y. Xie, J. Yang and M. D. Wei (2015). Rutile TiO 2 mesocrystals/reduced graphene oxide with high-rate and long-term performance for lithium-ion batteries. Scientific reports 5: 8498. Larue, C., H. Castillo-Michel, S. Sobanska, N. Trcera, S. Sorieul, L. Cécillon, L. Ouerdane, S. Legros and G. Sarret (2014). Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. Journal of Hazardous Materials 273: 17-26. Lee, Y. Y., H. S. Jung, J. M. Kim and Y. T. Kang (2018). Photocatalytic CO2 conversion on highly ordered mesoporous materials: Comparisons of metal oxides and compound semiconductors. Applied Catalysis B: Environmental 224: 594-601. Li, J. C., X. Q. Zeng, T. H. Ren and E. Van Der Heide (2014). The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2(3): 137-161. Li, J. Y., G. Luo, Z. H. Du and Y. W. Ma (2018). Hollow waveguide enhanced dimethyl sulfide sensor based on a 3.3μm interband cascade laser. Sensors and Actuators B: Chemical 255: 3550-3557. Li, X., R. C. Shen, S. Ma, X. B. Chen and J. Xie (2018). Graphene-based heterojunction photocatalysts. Applied Surface Science 430: 53-107. Li, X., J. G. Yu, S. Wageh, A. A. Al‐Ghamdi and J. Xie (2016). Graphene in photocatalysis: a review. Small 12(48): 6640-6696. Liang, D. Y., C. Cui, H. H. Hu, Y. P. Wang, S. Xu, B. L. Ying, P. G. Li, B. Q. Lu and H. L. Shen (2014). One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. Journal of Alloys and Compounds 582: 236-240. Lin, Y. H., H. T. Hsueh, C. W. Chang and H. Chu (2016). The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2: Characterization, kinetics, and reaction pathways. Applied Catalysis B: Environmental 199: 1-10. Lin, Y. T., C. H. Weng, H. J. Hsu, Y. H. Lin and C. C. Shiesh (2013). The synergistic effect of nitrogen dopant and calcination temperature on the visible-light-induced photoactivity of N-doped TiO2. International Journal of Photoenergy 2013. Liu, P. J., Z. J. Yao and J. T. Zhou (2016). Mechanical, thermal and dielectric properties of graphene oxide/polyimide resin composite. High Performance Polymers 28(9): 1033-1042. Liu, Y. (2014). Hydrothermal synthesis of TiO 2–RGO composites and their improved photocatalytic activity in visible light. Rsc Advances 4(68): 36040-36045. Lonkar, S. P., J.-M. Raquez and P. Dubois (2015). One-pot microwave-assisted synthesis of graphene/layered double hydroxide (LDH) nanohybrids. Nano-micro letters 7(4): 332-340. Lv, K. L., S. Fang, L. L. Si, Y. Xia, W. K. Ho and M. Li (2017). Fabrication of TiO2 nanorod assembly grafted rGO (rGO@ TiO2-NR) hybridized flake-like photocatalyst. Applied Surface Science 391: 218-227. M, A. and R. N.K (2019). Graphene–dye hybrid optical sensors. Nano-Structures & Nano-Objects 17: 194-217. Mackay, D., W. Y. Shiu and S. C. Lee (2006). Handbook of physical-chemical properties and environmental fate for organic chemicals, CRC press. Madarász, J., A. Brăileanu, M. Crişan, M. Răileanu and G. Pokol (2009). Evolved gas analysis of amorphous precursors for S-doped TiO2 by TG-FTIR and TG/DTA-MS: Part 3. Candidate from thiourea and Ti (IV)-ethoxide. Journal of thermal analysis and calorimetry 97(1): 265-271. Mamaghani, A. H., F. Haghighat and C. S. Lee (2017). Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental 203: 247-269. Mamaghani, A. H., F. Haghighat and C. S. Lee (2018). Gas phase adsorption of volatile organic compounds onto titanium dioxide photocatalysts. Chemical Engineering Journal 337: 60-73. Mamaghani, A. H., F. Haghighat and C. S. Lee (2019). Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere 219: 804-825. Martins, P. M., C. G. Ferreira, A. R. Silva, B. Magalhães, M. M. Alves, L. Pereira, P. Marques, M. Melle-Franco and S. Lanceros-Méndez (2018). TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study. Composites Part B: Engineering 145: 39-46. Mazierski, P., A. Mikolajczyk, B. Bajorowicz, A. Malankowska, A. Zaleska-Medynska and J. Nadolna (2018). The role of lanthanides in TiO2-based photocatalysis: A review. Applied Catalysis B: Environmental 233: 301-317. Merlen, C., M. Verriele, S. Crunaire, V. Ricard, P. Kaluzny and N. Locoge (2018). A preconcentration method based on a new sorbent for the measurement of selected reduced sulfur compounds at ppb level in ambient air. Microchemical Journal 143: 47-54. Mezni, A., N. Ben Saber, M. M. Ibrahim, N. Hamdaoui, A. Alrooqi, A. Mlayah and T. altalhi (2019). Photocatalytic activity of hybrid gold-titania nanocomposites. Materials Chemistry and Physics 221: 118-124. Mgwetyana, U., M. Elizabeth Makhatha, M. Mamo and P. Ndungu (2018). Synthesis and characterization of mesoporous titania using a synthetic (Pluronic P123) and a natural (Gum Arabic) templating agent. Materials Today: Proceedings 5(4, Part 2): 10585-10591. MiarAlipour, S., D. Friedmann, J. Scott and R. Amal (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials 341: 404-423. Mishra, A., A. Mehta and S. Basu (2018). Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: A review. Journal of Environmental Chemical Engineering 6(5): 6088-6107. Mo, J. H., Y. P. Zhang, Q. J. Xu, J. J. Lamson and R. Y. Zhao (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment 43(14): 2229-2246. Mo, J. H., Y. P. Zhang, Q. J. Xu and R. Yang (2009). Effect of TiO2/adsorbent hybrid photocatalysts for toluene decomposition in gas phase. Journal of Hazardous Materials 168(1): 276-281. Mukthar Ali, M. and K. Y. Sandhya (2016). Selective photodegradation and enhanced photo electrochemical properties of titanium dioxide–graphene composite with exposed (001) facets made by photochemical method. Solar Energy Materials and Solar Cells 144: 748-757. Muthoosamy, K., R. G. Bai, I. B. Abubakar, S. M. Sudheer, H. N. Lim, H. S. Loh, N. M. Huang, C. H. Chia and S. Manickam (2015). Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. International journal of nanomedicine 10: 1505. Mutuma, B. K., G. N. Shao, W. Kim, D, and H. T. Kim (2015). Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties. Journal of Colloid and Interface Science 442: 1-7. Nakata, K. and A. Fujishima (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13(3): 169-189. Naknikham, U., V. Boffa, G. Magnacca, A. Qiao, L. R. Jensen and Y. Yue (2017). Mutual-stabilization in chemically bonded graphene oxide–TiO 2 heterostructures synthesized by a sol–gel approach. Rsc Advances 7(65): 41217-41227. Nia, M. H., M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi and M. J. J. P. S. S. Shadnush (2015). Stabilizing and dispersing methods of TiO2 nanoparticles in biological studies. 6(2): 2008-4978. Ohno, T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura (2004). Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General 265(1): 115-121. Ola, O. and M. M. Maroto-Valer (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24: 16-42. Pan, Y., X. Z. Yuan, L. B. Jiang, H. B. Yu, J. C. Zhang, H. Wang, R. P. Guan and G. M. Zeng (2018). Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chemical Engineering Journal 354: 407-431. Petha, N. H., R. S. Lokhande, D. T. Seshadri and R. M. Patil (2017). Determination of residual dimethyl sulfate in hexaconazole technical (fungicide) by head space gas chromatography mass spectrometry. Microchemical Journal 133: 506-509. Police, A. K. R., M. Chennaiahgari, R. Boddula, S. V. P. Vattikuti, K. K. Mandari and B. Chan (2018). Single-step hydrothermal synthesis of wrinkled graphene wrapped TiO2 nanotubes for photocatalytic hydrogen production and supercapacitor applications. Materials Research Bulletin 98: 314-321. Qiao, L. P., J. M. Chen and X. Yang (2011). Potential particulate pollution derived from UV-induced degradation of odorous dimethyl sulfide. Journal of environmental sciences 23(1): 51-59. Ren, H., P. Koshy, W. F. Chen, S. H. Qi and C. C. Sorrell (2017). Photocatalytic materials and technologies for air purification. Journal of Hazardous Materials 325: 340-366. Rodbari, R. J., R. Wendelbo, L. C. L. A. Jamshidi, E. P. Hernández and L. Nascimento (2016). Study of physical and chemical characterization of nanocomposite polystyrene/Graphene oxide high acidity can be applied in thin films. Journal of the Chilean Chemical Society 61(3): 3120-3124. Sathish, M., B. Viswanathan and R. P. Viswanath (2007). Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti–melamine complex. Applied Catalysis B: Environmental 74(3): 307-312. Schnitzler, D. C. and A. J. G. Zarbin (2004). Organic/inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline. Journal of the Brazilian Chemical Society 15(3): 378-384. Serrà, A. and E. Vallés (2018). Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: Fundamentals and applications. Applied Materials Today 12: 207-234. Shaikh, A., S. P. Mishra, P. Mohapatra and S. Parida (2017). One-step solvothermal synthesis of TiO 2-reduced graphene oxide nanocomposites with enhanced visible light photoreduction of Cr (VI). Journal of Nanoparticle Research 19(6): 206. Shanmugam, M., A. Alsalme, A. Alghamdi and R. Jayavel (2016). In-situ microwave synthesis of graphene–TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants. Journal of Photochemistry and Photobiology B: Biology 163: 216-223. Shayegan, Z., C. S. Lee and F. Haghighat (2018). TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chemical Engineering Journal 334: 2408-2439. Shen, J. F., N. Li and M. X. Ye (2013). Supramolecular photocatalyst of RGO-cyclodextrin-TiO2. Journal of Alloys and Compounds 580: 239-244. Shen, K., X. Xue, X. I. Wang, X. Y. Hu, H. W. Tian and W. T. Zheng (2017). One-step synthesis of band-tunable N, S co-doped commercial TiO 2/graphene quantum dots composites with enhanced photocatalytic activity. Rsc Advances 7(38): 23319-23327. Shen, K., X. Xue, X. Y. Wang, X. Hu, H. W. Tian and W. Y. Zheng (2017). One-step synthesis of band-tunable N, S co-doped commercial TiO 2/graphene quantum dots composites with enhanced photocatalytic activity. Rsc Advances 7(38): 23319-23327. Shen, K., X. Xue, X. Y. Wang, X. Y. Hu, H. W. Tian and W. T. Zheng (2017). One-step synthesis of band-tunable N, S co-doped commercial TiO 2/graphene quantum dots composites with enhanced photocatalytic activity. Rsc Advances 7(38): 23319-23327. Shen, R. C., C. J. Jiang, Q. J. Xiang, J. Xie and X. Li (2019). Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science 471: 43-87. Shi, J. W., J. T. Zheng, Y. Hu and Y. C. Zhao (2007). Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2. Materials Chemistry and Physics 106(2): 247-249. Shi, X. B., W. Wei, Z. D. Fu, W. L. Gao, C. Y. Zhang, Q. Zhao, F. M. Deng and X. Y. Lu (2019). Review on carbon dots in food safety applications. Talanta 194: 809-821. Shi, Y. H., J. H. Huang, G. M. Zeng, W. J. Cheng and J. L. Hu (2019). Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? Journal of Membrane Science 584: 364-392. Singh, S., K. Rathi and K. Pal (2018). Synthesis, characterization of graphene oxide wrapped silicon carbide for excellent mechanical and damping performance for aerospace application. Journal of Alloys and Compounds 740: 436-445. Sinnott, R. K. and G. Towler (2009). Chemical engineering design: SI Edition, Elsevier. Sleiman, M., P. Conchon, C. Ferronato and J.-M. Chovelon (2009). Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental 86(3): 159-165. Soares, C. P. P., R. d. L. Baptista and D. V. Cesar (2018). Solvothermal reduction of graphite oxide using alcohols. Materials Research 21(1). Stefanov, B. I., G. A. Niklasson, C. G. Granqvist and L. Österlund (2016). Gas-phase photocatalytic activity of sputter-deposited anatase TiO2 films: Effect of 〈001〉 preferential orientation, surface temperature and humidity. Journal of Catalysis 335: 187-196. Strankowski, M., D. Włodarczyk, Ł. Piszczyk and J. Strankowska (2016). Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. Journal of Spectroscopy 2016. Sun, H. Q., Y. Bai, Y. P. Cheng, W. Q. Jin and N. P. Xu (2006). Preparation and characterization of visible-light-driven carbon− sulfur-codoped TiO2 photocatalysts. Industrial & Engineering Chemistry Research 45(14): 4971-4976. Sun, J., S. H. Hu, K. R. Sharma, B. Keller-Lehmann and Z. G. Yuan (2014). An efficient method for measuring dissolved VOSCs in wastewater using GC–SCD with static headspace technique. Water Research 52: 208-217. Sun, S. S., F. Liang, L. G. Tang, J. Wu and C. Ma (2017). Microstructural investigation of gas shale in Longmaxi Formation, Lower Silurian, NE Sichuan Basin, China. Energy Exploration & Exploitation 35(4): 406-429. Sun, Z. H., J. J. Guo, S. M. Zhu, J. Ma, Y. L. Liao and D. Zhang (2014). High photocatalytic performance by engineering Bi 2 WO 6 nanoneedles onto graphene sheets. Rsc Advances 4(53): 27963-27970. Syama, S., C. P. Aby, T. Maekawa, D. Sakthikumar and P. V. Mohanan (2017). Nano-bio compatibility of PEGylated reduced graphene oxide on mesenchymal stem cells. 2D Materials 4(2): 025066. Teh, C. Y., T. Y. Wu and J. C. Juan (2017). An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chemical Engineering Journal 317: 586-612. Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87(9-10): 1051-1069. Tolosana-Moranchel, Á., A. Manassero, M. L. Satuf, O. M. Alfano, J. A. Casas and A. Bahamonde (2019). Influence of TIO2-rGO optical properties on the photocatalytic activity and efficiency to photodegrade an emerging pollutant. Applied Catalysis B: Environmental 246: 1-11. Tran, P. D., L. H. Wong, J. Barber and J. S. C. Loo (2012). Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science 5(3): 5902-5918. Uche, D. O. V. (2013). Sol-gel technique: A veritable tool for crystal growth. Adv. appl. sci. res 4: 506-510. Vandenbroucke, A., U. Lyhs, I. Snauwaert, S. Pihlajaviita, L. De Vuyst, J. Verbakel, T. De Burghgraeve, B. Aertgeerts, D. M. A. Bullens and B. Shinkins (2015). Abatement of volatile organic compounds by combined use of non-thermal plasma and heterogeneous catalysis. Sort 100: 250. Verma, S., H. P. Mungse, N. Kumar, S. Choudhary, S. L. Jain, B. Sain and O. P. Khatri (2011). Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chemical communications 47(47): 12673-12675. Wang, L. H., L. F. Liu and F. L. Yang (2018). Efficient gas phase VOC removal and electricity generation in an integrated bio-photo-electro-catalytic reactor with bio-anode and TiO2 photo-electro-catalytic air cathode. Bioresource Technology 270: 554-561. Wang, P., J. Wang, X. F. Wang, H. G. Yu, J. G. Yu, M. Lei and Y. G. Wang (2013). One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Applied Catalysis B: Environmental 132: 452-459. Wang, P., J. Wang, X. F. Wang, H. G. Yu, J. G. Yu, M. Lei and Y. G. Wang (2013). One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Applied Catalysis B: Environmental 132-133: 452-459. Wang, W. L., Z. F. Wang, J. J. Liu, Z. Luo, S. L. Suib, P. He, G. Q. Ding, Z. G. Zhang and L. Y. Sun (2017). Single-step one-pot synthesis of TiO 2 nanosheets doped with sulfur on reduced graphene oxide with enhanced photocatalytic activity. Scientific reports 7: 46610. Wang, X. L., Y. Y. Zhao, K. Mølhave and H. Y. Sun (2017). Engineering the surface/interface structures of titanium dioxide micro and nano architectures towards environmental and electrochemical applications. Nanomaterials 7(11): 382. Wang, Y., Y. M. He, Q. H. Lai and M. H. Fan (2014). Review of the progress in preparing nano TiO2: An important environmental engineering material. Journal of environmental sciences 26(11): 2139-2177. Wang, Y. Q., T. T. Jiang, D. W. Meng, J. Yang, Y. C. Li, Q. Ma and J. Han (2014). Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Applied Surface Science 317: 414-421. Wang, Z. M., J. Liu, Y. C. Dai, W. Y. Dong, S. C. Zhang and J. M. Chen (2011). Dimethyl sulfide photocatalytic degradation in a light-emitting-diode continuous reactor: kinetic and mechanistic study. Industrial & Engineering Chemistry Research 50(13): 7977-7984. Wei, Y., J. X. Zhu, Y. X. Gan and G. Cheng (2018). Titanium glycolate-derived TiO2 nanomaterials: Synthesis and applications. Advanced Powder Technology 29(10): 2289-2311. Wong, C., C. Lai, K. Lee and S. Hamid (2015). Advanced chemical reduction of reduced graphene oxide and its photocatalytic activity in degrading reactive black 5. Materials 8(10): 7118-7128. Wu, H., H. Y. Yan, Y. Quan, H. Z. Zhao, N. Z. Jiang and C. R. Yin (2018). Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. Journal of Environmental Management 222: 409-419. Wu, J., Q. J. Liu, P. Gao and Z. Q. Zhu (2011). Influence of praseodymium and nitrogen co-doping on the photocatalytic activity of TiO2. Materials Research Bulletin 46(11): 1997-2003. Wu, T., X. M. Wang, D. J. Li and Z. G. Yi (2010). Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmospheric Environment 44(39): 5065-5071. Wu, W. Z., L. J. Zhang, X. J. Zhai, C. Liang and K. F. Yu (2018). Preparation and photocatalytic activity analysis of nanometer TiO2 modified by surfactant. Nanomaterials and Nanotechnology 8: 1847980418781973. Xiang, Q. J., J. G. Yu and M. Jaroniec (2012). Graphene-based semiconductor photocatalysts. Chemical Society Reviews 41(2): 782-796. Xu, D. F., L. L. Li, R. A. He, L. F. Qi, L. Y. Zhang and B. Cheng (2018). Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance. Applied Surface Science 434: 620-625. Xu, Y., Y. A. Li, P. Wang, X. F. Wang and H. G. Yu (2018). Highly efficient dual cocatalyst-modified TiO2 photocatalyst: RGO as electron-transfer mediator and MoSx as H2-evolution active site. Applied Surface Science 430: 176-183. Yadav, H. M. and J. S. Kim (2016). Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. Journal of Alloys and Compounds 688: 123-129. Yahya, N., F. Aziz, N. A. Jamaludin, M. A. Mutalib, A. F. Ismail, W. N. W. Salleh, J. Jaafar, N. Yusof and N. A. Ludin (2018). A review of integrated photocatalyst adsorbents for wastewater treatment. Journal of Environmental Chemical Engineering 6(6): 7411-7425. Yan, G. T., M. Zhang, J. Hou and J. J. Yang (2011). Photoelectrochemical and photocatalytic properties of N+ S co-doped TiO2 nanotube array films under visible light irradiation. Materials Chemistry and Physics 129(1-2): 553-557. Yang, C., J. C. Zhang, S. B. Han, X. Z. Wang, L. Wang, W. W. Yu and Z. G. Wang (2016). Compositional controls on pore-size distribution by nitrogen adsorption technique in the Lower Permian Shanxi Shales, Ordos Basin. Journal of Natural Gas Science and Engineering 34: 1369-1381. Yang, K., X. Y. Huang, L. J. Fang, J. L. He and P. K. Jiang (2014). Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold. Nanoscale 6(24): 14740-14753. Yang, Y. K., C. P. Han, B. B. Jiang, J. Iocozzia, C. E. He, D. Shi, T. Jiang and Z. Q. Lin (2016). Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering: R: Reports 102: 1-72. Ye, Z. B., H. L. Tai, T. Xie, Y. J. Su, Z. Yuan, C. H. Liu and Y. D. Jiang (2016). A facile method to develop novel TiO2/rGO layered film sensor for detecting ammonia at room temperature. Materials Letters 165: 127-130. Yen, W. H., C. C. Hsieh, C. Y. Hung, H. W. Wang and M. C. Tsui (2010). Flexible TiO2 Working Electrode for Dye‐Sensitized Solar Cells. Journal of the Chinese Chemical Society 57(5B): 1162-1166. Yi, M., Z. G. Shen, X. J. Zhang and S. L. Ma (2012). Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. Journal of Physics D: Applied Physics 46(2): 025301. Yoon, D. H., J. E. Hwang, D. H. Kim, W. Y. Chang, K. Y. Chung and J. H. Kim (2017). One-pot route for uniform anchoring of TiO2 nanoparticles on reduced graphene oxides and their anode performance for lithium-ion batteries. The Journal of Supercritical Fluids 125: 66-78. Yu, B. D., W. He, N. S. Li, F. Zhou, Z. H. Shen, H. B. Chen and G. Xu (2017). Experiments and kinetics of solar PCO for indoor air purification in PCO/TW system. Building and Environment 115: 130-146. Yu, Y., J. C. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge and P. K. Wong (2005). Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General 289(2): 186-196. Zhang, J. and Y. Nosaka (2014). Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. The Journal of Physical Chemistry C 118(20): 10824-10832. Zhang, X. Y., B. Gao, Y. L. Zheng, X. Hu, A. E. Creamer, M. D. Annable and Y. C. Li (2017). Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. Bioresource Technology 245: 606-614. Zhao, H. L., L. J. Liu, J. M. Andino and Y. Li (2013). Bicrystalline TiO 2 with controllable anatase–brookite phase content for enhanced CO 2 photoreduction to fuels. Journal of Materials Chemistry A 1(28): 8209-8216. Zhong, L. X., F. Haghighat, P. Blondeau and J. Kozinski (2010). Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications. Building and Environment 45(12): 2689-2697. Zhong, L. X., F. Haghighat and C. S. Lee (2013). Ultraviolet photocatalytic oxidation for indoor environment applications: Experimental validation of the model. Building and Environment 62: 155-166. Zhou, W. and H. G. Fu (2013). Mesoporous TiO2: preparation, doping, and as a composite for photocatalysis. ChemCatChem 5(4): 885-894. Zhou, X., S. Q. Zhou, F. Z. Ma and Y. B. Xu (2019). Synergistic effects and kinetics of rGO-modified TiO2 nanocomposite on adsorption and photocatalytic degradation of humic acid. Journal of Environmental Management 235: 293-302. Zou, W. X., B. Gao, Y. S. Ok and L. Dong (2019). Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Chemosphere 218: 845-859.
|