跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊秀
研究生(外文):LI,CHUN-HSIU
論文名稱:隧道掘進效應與約束損失關係之研究
論文名稱(外文):Study on the Relationship between Tunnel Advance Effect and Confinement Loss
指導教授:李煜舲
指導教授(外文):LEE,YU-LIN
口試委員:呂志宗王承德
口試委員(外文):LU,ZHI-ZONGWANG,CHENG-DER
口試日期:2018-07-18
學位類別:碩士
校院名稱:中華大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:327
中文關鍵詞:隧道掘進效應收斂約束法約束損失有限元素分析外顯分析
外文關鍵詞:Tunnel Advancing EffectConvergence-Confinement MethodConfinement LossFinite Element Analysis MethodExplicit Analysis Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
為探討收斂約束法以二維分析模式模擬隧道第三方向前進開挖之適用性,即驗證隧道掘進效應在同一斷面不同位置處之收斂變化為單一化的約束損失值之假設。本研究採用收斂約束法理論中之約束損失方法,模擬隧道前進開挖引致圍岩收斂位移變化之結果,探討隧道掘進效應函數之相關參數,並提出隧道前期與無支撐跨距之約束損失預估方法,進而建立隧道之約束損失曲線。最後,將此分析方法應用在實際工程隧道案例上。
本研究數值模擬採用有限元素分析(FEM)和外顯分析(EAM)模擬隧道前進開挖圍岩收斂變化之情況,其分析模擬的條件包含(1)非等向應力場,側向應力比0.4≤Ko≤2.0(2)無支撐/有支撐隧道情況(3)彈性/彈塑性圍岩。實際案例採用八卦山、新永春與新南澳隧道之計測收斂位移,現地條件包含(1)非等向應力場,側向應力比0.4≤Ko≤2.0(2)不同岩體分類(3)不同無支撐跨距(4)隧道時間效應。
將數值模擬和實際案例之收斂位移,經由平移計算並作正規化處理,可獲得不受隧道斷面位置與側向應力比影響之單一化的約束損失值,且經由迴歸分析約束損失值,可以得知隧道掘進效應函數之參數η,因圍岩性質不同則有一特定範圍,且其範圍與無支撐跨距無關。關於隧道時間效應之影響,本研究提出平移計算方法,修正時間效應產生之收斂位移,其分析結果與同岩體分類且無時間效應之案例相同。依照上述之研究結果,可以將其分析程序應用實際工程上,可建立不受時間效應、隧道斷面位置與側向應力比影響之約束損失曲線。
關鍵字:隧道掘進效應、收斂約束法、約束損失、有限元素分析、外顯分析。
In order to explore the applicability of the Convergence Confinement Method to simulate the third-direction forward excavation of the tunnel in two-dimensional analysis mode, the variation of convergence due to advancing excavation at different positions around a circular tunnel is verified with a confinement loss value. This study includes to use the confinement loss in the Convergence Confinement Method, to explore the relevant parameters of tunnel advancing effect function, to propose a method for predicting the confinement loss of tunnel pre-convergence and unsupported spans, and to establish the confinement loss curve of the tunnel. Finally, this analysis method is applied to the actual engineering tunnel cases studies.
The numerical simulation of study that uses finite element analysis method (FEM) and explicit analysis method (EAM) is used to simulate the convergence in the tunnel excavation. The conditions of the analysis and simulation include: (1) anisotropic stress field of the lateral stress ratio 0.4 ≤ Ko ≤ 2.0, (2) unsupported/supported tunnel, and (3) Elastic/ elastic-plastic rock mass. The actual case study includes the measured convergence displacement of the Baguashan, New-Yongchun and New-Nanao tunnels. The local conditions include: (1) anisotropic stress field of the lateral stress ratio 0.4 ≤ Ko ≤ 2.0, (2) the different rock mass classifications, (3) the different tunnel excavation non-supported distance, and (4) the tunnel time effect.
The convergence of the numerical simulation and the actual case, through the translation calculation and normalized method, that can obtain a confinement loss value that is not affected by the tunnel section locations and the lateral stress ratio. Through the regression analysis of the confinement loss value, we can know that the parameters η of the tunnel advancing effect function are affected by the surrounding rock properties. Regarding the influence of tunnel time effect this study proposes a translational calculation method to correct the convergence caused by the time effect. The results of the regression analysis are the same as those of the same rock mass classification without time effect. According to the above research results, the analysis program can be applied to the actual engineering, and the confinement loss curve which is not affected by the time effect, the tunnel section locations and the lateral stress ratio can be established.

Keywords: Tunnel Advancing Effect, Convergence-Confinement Method, Confinement Loss, Finite Element Analysis Method, Explicit Analysis Method.
摘要 ii
Abstract iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
符號說明 xvi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究的範圍與限制 2
1.5 研究內容與流程架構 2
第二章 參考文獻 5
2.1 收斂約束法基本理論 5
2.1.1 約束損失 6
2.1.2 地盤反應曲線 6
2.1.3 支撐特徵曲線 9
2.2 收斂約束法之外顯分析 13
2.2.1 隧道計測收斂資料之時間、距離和收斂位移 13
2.2.2 約束損失曲線 14
2.2.3 隧道掘進效應 14
2.2.4 隧道掘進效應函數 16
2.3 實際隧道收斂資料回顧 19
2.4 Mataix Laboratory(Matlab)之簡介 20
2.5 相關文獻回顧 22
第三章 隧道約束損失曲線之公式推導與步驟建立 38
3.1 隧道掘進效應函數之假設 38
3.2 隧道約束損失曲線之公式推導 39
3.3 隧道約束損失λ0與λd之預估 42
3.4 隧道掘進效應函數之參數迴歸分析步驟 44
3.5 隧道約束損失曲線之建立步驟 45
第四章 隧道掘進效應引致圍岩收斂之正規化分析 58
4.1 圍岩收斂正規化與位置/側向應力比之探討 58
4.1.1 隧道無支撐情況 60
4.1.2 隧道有支撐情況 62
4.2 隧道掘進效應函數之參數η探討 64
4.2.1 無支撐隧道彈性圍岩 64
4.2.2 無支撐隧道彈塑性圍岩 65
4.2.3 有支撐隧道彈塑性圍岩,無支撐短跨距λd=0.4 65
4.2.4 有支撐隧道彈塑性圍岩,無支撐短跨距λd=0.7 66
4.3 有支撐隧道約束損失曲線之建立 67
4.4 三維有限元素分析隧道輪進開挖與隧道掘進效應函數之關係 68
4.5 小結 69
第五章 實際隧道工程案例分析與探討 121
5.1 工程案例介紹 121
5.1.1 新永春隧道 121
5.1.2 新南澳隧道 123
5.1.3 八卦山隧道 124
5.2 案例分析與結果討論 125
5.2.1 案例分析 126
5.2.2 結果討論 128
第六章 結論與建議 162
6.1 結論 162
6.2 建議 163
參考文獻 164
附錄A 169
平移計算與正規化處理 171
迴歸分析隧道掘進效應函數之參數η 204
有支撐隧道之約束損失曲線 222
附錄B 229
新永春與新南澳隧道-第III類岩體之分析結果 230
新永春與新南澳隧道-第IV類岩體之分析結果 250
新永春與新南澳隧道-第V類岩體之分析結果 277
八卦山隧道-岩體之分析結果 290
1.中興工程顧問公司 (1998-2002),「東西向快速公路漢寶草屯線(林厝至過溝)段工程之隧道」,安全計測半月報,第13-123期。

2.李煜舲 (2003),「收斂圍束法在新奧隧道工法之分析與應用」,地工技術,第九十五期,第95-106頁。

3.李煜舲 林銘益 (2004),「台灣東部鐵路單軌隧道開挖支撐互制行為之探討」,中國岩石 力學與工程學報,第23卷,第4823-4832頁。

4.李煜舲、林銘益、許文貴 (2008),「三維有限元分析隧道開挖收斂損失與縱剖面變形曲線關係研究」,中國岩石力學與工程學報,第27卷,第2期,第258-265頁。

5.李煜舲、許文貴、林銘益 (2009),「以隧道變形量測資料分析掘進效應與約束損失」,中國岩石力學與工程學報,第28卷,第1期,第39-46頁。

6.李煜舲、賴明宏、林銘益 (2011),「隧道開挖支撐收斂約束法之外顯分析」,中國土木水利工程學刊,第23卷,第3期,第245-256頁。

7.李煜舲、蔡禮鍵、李文元 (2013),「非等向應力場隧道前進開挖引致地盤反應行為之外顯分析」,中國土木水利工程學刊,第25卷,第3期,第231-240頁。

8.李俊秀、李煜舲 (2016),「以隧道收斂資料分析約束損失之預估」,2016岩盤工程研討會論文集,高雄,第207-216頁。

9.周允文、和泰源 (1999),「八卦山卵礫岩層隧道之設計與施工」,中華技術,第44卷,第205-213頁。

10.林惠玲、陳正倉 (2002),「應用統計學」,雙葉書廊有限公司,台北。

11.林銘益 (2003),「台灣東部變質岩隧道群收斂資料之分析與應用」,碩士論文,中華大學土木工程學系碩士班,新竹。

12.張常光、曾開華 (2015),「等值地應力下岩質圓形隧道位移釋放係數比較及應用」,岩石力學與工程學報,第34卷,第3期,第498-510頁。

13.張傳慶、馮夏庭、周輝 (2009),「隧洞圍岩收斂損失位移的求取方法及應用」,岩土力学,第30卷,第4期,第997-1004頁。

14.黃俊傑 (2008),「新外顯法在收斂圍束法之應用與研究」,碩士論文,中華大學土木工程學系碩士班,新竹。

15.進騰達敏 (1979),「NATM工法變位予測」,應用地質調查事務所年報。

16.陳羿安 (2004),「卵礫石層隧道計測資料之分析與應用」,碩士論文,中華大學土木工程學系碩士班。

17.蔡逸智 (2001),「三維隧道開挖縱剖面力學行為之研究」,碩士論文,中華大學土木工程學系碩士班,新竹。

18.蔡禮鍵 (2011),「非靜水應力狀態下隧道開挖支撐非線性行為之外顯分析」,碩士論文,中華大學土木工程學系碩士班,新竹。

19.Asadollahpour, E., Rahmannejad, R., Asghari, A. and Abdollahipour, A. (2014). “Back Analysis of Closure Parameters of Panet Equation and Burger’s Model of Babolak Water Tunnel Conveyance,” International Journal of Rock Mechanics & Mining Sciences, Vol. 68, pp. 159-166.

20.Basarir, H., Genis, M. and Ozarslan, A. (2010). “The Analysis of Radial Displacements Occurring Near the Face of a Circular Opening in Weak Rock Mass,” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, No. 5, pp. 771-783.

21.Chern, J.C., Shiao, F.Y. and Yu, C.W. (1998). “An Empirical Safety Criterion for Tunnel Construction,” Proceedings of the Regional Symposium on Sedimentary Rock Engineering, pp. 222-227.

22.Corbetta, F., Bemaud, D. and Nguyen-Minh, D. (1991). “Contribution a Lanmethode Convergence-Confinement par le Principe de la Similitude,” Revue Française de Geotechnique, Vol. 54, No. 4, pp. 5-12.

23.Carranza-Torres, C. and Fairhurst, C. (1999). “The Elasto-Plastic Response of Underground Excavation in Rock Masses that Satisfy the Hoek-Brown Failure Criterion,” International Journal of Rock Mechanics and Mining Sciences, Vol. 36, No. 6, pp. 777-809.

24.Carranza-Torres, C. and Fairhurst, C. (2000). “Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses that Satisfy the Hoek-Brown Failure Criterion,” Tunnelling and Underground Space Technology, Vol. 16, No. 2, pp. 187-213.

25.Carranza-Torres, C. (2004). “Elasto-Plastic Solution of Tunnel Problems Using the Generalized Form of The Hoek-Brown Failure Criterion,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 3, pp. 629-639.

26.Do, N.-A., Dias, D., Oreste, P. and Irini, D.-M. (2014). “2D Tunnel Numerical Investigation: The Influence of the Simplified Excavation Method on Tunnel Behaviour,” Geotech. Geol. Eng., Vol. 32, pp. 42-58.

27.Franzen, T. (1992). “Invited Lecture: Shotcrete for Underground Support – A State of the Art Report with Focus on Steel Fibre Reinforcement. Rock Support in Mining and Underground Construction,” Sudbury, Ontario, Canada, 16-19/6/1992 Balkema, Rotterdam, pp. 91-104.

28.Hoek, E. and Brown, E.T. (1980). “Underground Excavation in Rock,” The Institution of Mining and Metallurgy London, England.

29.Hoek, E. and Brown, E.T. (1997). “Practical Estimates of Rock Mass Strength,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 34, No. 8, pp. 1165-1186.

30.Hoek, E. and Diederichs, M.S. (2006). “Empirical Estimation of Rock Mass Modulus,” International Journal of Rock Mechanics & Mining Sciences, Vol. 43, No. 2, pp. 203-215.

31.Jassionnesse, C., Tsirogianni, A. and Favre, M. (2013). “New Development Using the "Convergence-confinement" Method in an Anisotropic Stress Field,” World Tunnel Congress Geneva Underground.

32.Kirsch, G. (1898). “Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre,” Zeit Ver Deut Ing. J., Vol. 42, pp. 797-807.

33.Lee, Y.L. (1994). “Prise en compte des non-linéarité de comportement des sols et roches dans la modélisation du creusement d’un tunnel,” Ph.D. Dissertation, Département de Génie Civil, Ecole Nationale des Ponts et Chaussées, Paris, France.

34.Mousivand, M., Maleki, M., Nekooei, M. and Mansoori, M.R. (2017). “Application of Convergence–Confinement Method in Analysis of Shallow Non-circular Tunnels,” Geotech. Geol. Eng., Vol. 35, pp. 1185-1198.

35.Oreste, P.P. (2003). “Analysis of Structural Interaction in Tunnels Using the Convergence confinement Approach,” Tunnelling and Underground Space Technology, Vol. 18, No. 4, pp. 347-363.

36.Oreste, P.P. (2003). “A Procedure for Determining the Reaction Curve of Shotcrete Lining Considering Transient Conditions,” Rock Mech. Rock Engng., Vol. 36, No. 3, pp. 209-236.

37.Oreste, P.P. and Pella, D. (1997). “Modelling Progressive Hardening of Shotcrete in Convergence-Confinement Approach to Tunnel Design,” Tunnelling and Underground Space Technology, Vol. 12, No. 3, pp. 425-431.

38.Oke, J., Vlachopoulos, N. and Diederichs, M. (2018). “Improvement to the Convergence Confnement Method: Inclusion of Support Installation Proximity and Stifness,” Rock Mechanics and Rock Engineering, Vol. 51, pp. 1495-1519.

39.Panet, M. and Guenot, A. (1982). “Analysis of Convergence behind the Face of a Tunnel,” Proceedings of the 3rd International Symposium on Tunnelling, pp. 197-204.

40.Panet, M., (1995). “Calcul des Tunnels par la methode de Convergence-Confinement,” Press de l’ecole Nationale des Ponts et Chaussees, Paris.

41.Paraskevopouloua, C. and Diederichsb, M. (2018). “Analysis of time-dependent deformation in tunnels using the Convergence Confinement Method,” Tunnelling and Underground Space Technology, Vol. 71, pp. 62-80.

42.Sulem, J., Panet, M. and Guenot, A. (1987). “Closure Analysis in Deep Tunnels,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 24, No. 3, pp. 145-154.

43.Unlu, T. and Gercek, H. (2003). “Effect of Poisson’s ratio on the normalized radial displacements occurring around the face of a circular tunnel,” Tunnelling and Underground Space Technology, Vol. 18, No. 5, pp.547-553.

44.Vlachopoulos, N. and Diederichs, M.S., (2009). “Improved Longitudinal Displacement Profiles for Convergence Confinement Analysis of Deep Tunnels,” Rock Mechanics and Rock Engineering, Vol. 42, pp. 131-146.

45.Wenga, W.-C., Jeng, F.-S., Chu, B.-L., Jou, Y.-W. and Liao, C.-Y. (2015). “Deformation analysis of tunnel excavation in gravelly formation using the anisotropic degradation model,” Journal of the Chinese Institute of Engineers, Vol. 38, No. 8, pp. 959-967.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊