跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林彥宇
研究生(外文):Yen-Yu Lin
論文名稱:鈣質廢棄物製備氫氧基磷灰石作為吸附劑材料
論文名稱(外文):Synthesis of Hydroxyapatite from Calcium Rich Waste as Adsorbent
指導教授:林凱隆林凱隆引用關係
指導教授(外文):Kae-Long Lin
口試委員:洪明瑞鄭大偉邱英嘉
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:141
中文關鍵詞:氫氧磷灰石水熱合成石灰石污泥大理石污泥等溫吸附模式
外文關鍵詞:Hydroxyapatitehydrothermal synthesislimestone sludgemarble sludgeisothermal adsorption mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
石材工業產生大量廢棄物的問題不僅影響環境,且還影響資源維護及廢棄物管理問題。本研究所使用之大理石污泥和石灰石污泥被認為是具環境吸引力及再利用的基本特徵。目前正在進行一項研究,將這種副產品與工業應用互相結合。因此,本研究的目的是將石灰石污泥和大理石污泥藉由水熱技術轉化為奈米HA晶體,並有效控制HA晶體的尺寸和形態,應用於水介質中去除Pb和Cu的吸附劑。經水熱合成之氫氧基磷灰石由XRD分析顯示,結晶度為98.48-99.54%,顯示出其具良好結晶性能。由SEM及TEM分析,可觀察到其呈現棒狀型態,並且交錯堆疊,形成許多微孔結構,晶體長度約為114-201 nm。此外,藉由氮氣吸脫附曲線得知氫氧基磷灰石具有H3磁滯迴線的典型IUPAC IV型等溫線,顯示N2於中孔產生毛細管冷凝,其平均孔徑為10.25-20.45 nm。藉由BET得知表面積和總孔體積為74.69-115.04 m2/g和0.5339 cm3/g。以Langmuir等溫吸附模型相較於其他模型具較佳相關性,其相關性R2為0.98-0.99。經Langmuir擬合之結果得知,其所合成氫氧基磷灰石最大吸附量為245.87 mg/g,對於人工廢水之去除率高達99%。熱力學分析顯示該過程是熱力學自發和吸熱過程。動力學研究顯示,吸附過程遵循偽二階模型,總吸附速率受膜擴散作為主導機制。
The problem of the large amounts of waste products deriving from stone industrial affects not only the environmental impact but also the resources maintenance and the problem of waste management. This study presents the essential features of an environmentally attractive reuse of what is currently considered limestone sludge and marble sludge. A research is currently carried out in order to join this by-product with possible industrial. Accordingly, the aim of this study is to convert limestone sludge and marble sludge into nanocrystalline HA and to achieve control over the size and morphology of the HA crystals by hydrothermal technique, and utilize as an adsorbent for the removal of Pb and Cu from aqueous media. X-ray diffraction analysis confirmed that all powders were composed of a hydroxyapatite phase. The powders were of crystallinity (Xc =98.48-99.54%) The surface morphologies of the hydroxyapatite were examined via SEM and TEM analysis. That consist of aggregates of rod-shaped nanoparticles with a narrow size distribution. That the actual size of the precipitated crystals were 114-201 nm in length. The hydroxyapatite was classified as a typical IUPAC type-IV isotherm with an H3 hysteresis loop, indicating a mesoporous structure based on capillary condensation of N2 in mesopores, which was also confirmed by the measured average pore diameter of 10.25-20.45 nm. The BET surface area and total pore volume of the HAP were estimated to be 74.69-115.04 m2/g and 0.5339 cm3/g. Langmuir isotherm model (R2=0.98-0.99) seems to be the most accurate model and provides a better description for the equilibrium data compared to the other models. According to the Langmuir fitting, the theoretical maximum adsorption capacity was found to be 245.45 mg/g, and more than 99% of Artificial wastewater can be removed by the Hydroxyapatite. Thermodynamic analysis indicated that the process is thermodynamically spontaneous and endothermic process. Kinetic studies revealed that the adsorption process follows the pseudo-second-order model and that the overall adsorption rate is controlled by film diffusion as the dominant mechanism.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
表目錄 VIII
第一章 前言 1
1-1研究緣起 1
1-2研究目的與內容 2
第二章 文獻回顧 3
2-1石灰石污泥之來源特性與處置再利用 3
2-2大理石污泥之來源特性與處置再利用 14
2-3氫氧基磷灰石之結構性質及應用 19
2-4磷酸鹽之性質與高溫特性 26
2-5吸附理論 29
第三章 實驗材料設備與方法 36
3-1實驗流程 36
3-2實驗材料 37
3-3研究設備 38
第四章 結果與討論 46
4-1材料基本物化特性分析 46
4-2不同Ca/P莫耳比及不同水熱溫度分析 52
4-3合成氫氧基磷灰石之微觀結構 70
4-4水熱合成氫氧基磷灰石之孔洞分析 80
4-5合成氫氧基磷灰石之NMR圖譜分析 88
4-6水熱合成氫氧基磷灰石之吸附動力曲線分析 94
4-7合成之氫氧基磷灰石等溫吸附分析 108
4-8吸附熱力學 129
第五章 結論與建議 134
5-1結論 134
5-2建議 135
參考文獻 136
Agougui, H., Aissa, A., Maggi, S., Debbabi, M. Phosphonate-hydroxyapatite hybrid compounds prepared by hydrothermal method. Applied Surface Science, 257(5), 1377-1382. (2010).
Algin, H. M., Turgut, P. Cotton and limestone powder wastes as brick material. Construction and Building Materials, 22(6), 1074-1080. (2008).
Altun, N. E. Assessment of marble waste utilization as an alternative sorbent to limestone for SO2 control. Fuel Processing Technology, 128, 461-470. (2014).
Anwar, A., Akbar, S. Continuous microwave assisted flow synthesis and characterization of calcium deficient hydroxyapatite nanorods. Advanced Powder Technology, 29(6), 1493-1498. (2018).
An, L., Li, W., Xu, Y., Zeng, D., Cheng, Y., Wang, G. Controlled additive-free hydrothermal synthesis and characterization of uniform hydroxyapatite nanobelts. Ceramics International, 42(2), 3104-3112. (2016).
Arfa, B. A. E. B., Salvado, I. M. M., Frade, J. R., Pullar, R. C. Fast route for synthesis of stoichiometric hydroxyapatite by employing the Taguchi method. Materials & Design, 109, 547-555. (2016).
Ashish, D. K. Feasibility of waste marble powder in concrete as partial substitution of cement and sand amalgam for sustainable growth. Journal of Building Engineering, 15, 236-242. (2018).
Barka, N., Qourzal, S., Assabbane, A., Nounah, A., Ichou, Y. A. Removal of Reactive Yellow 84 from aqueous solutions by adsorption onto hydroxyapatite. Journal of Saudi Chemical Society, 15(3), 263-267. (2011).
Bensalah, H., Bekheet, M. F., Younssi, S. A., Ouammou, M., Gurlo, A. Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. Journal of Environmental Chemical Engineering, 6(1), 1347-1352. (2018).
Corami, A., Mignardi, S., Ferrini, V., Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. Journal of Hazardous Materials, 146(1–2), 164-170. (2007).
Cui, L., Hu, L., Guo, X., Zhang, Y., Wang, Y., Wei, Q., Du, B. Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesium hydroxyapatite/ferroferric oxide nano-composites with easy magnetic separation assistance. Journal of Molecular Liquids, 198, 157-163. (2014).
Diab, A. M., Elmoaty, A. E. M. A., Aly, A. A. Long term study of mechanical properties, durability and environmental impact of limestone cement concrete. Alexandria Engineering Journal, 55(2), 1465-1482. (2016).
Felekoglu, B. Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resources, Conservation and Recycling, 51(4), 770-791. (2007).
Feng, G., Cheng, X., Xie, D., Wang, K., Zhang, B. Fabrication and characterization of nano prism-like hydroxyapatite coating on porous titanium substrate by combined biomimetic-hydrothermal method. Materials Letters, 163, 134-137. (2016).
Fihri, A., Len, C., Varma, R. S., Solhy, A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 347(15), 48-76. (2017).
Ghahremani, D., Mobasherpour, I., Salahi, E., Ebrahimi, M., Manafi, S., Keramatpour, L. Potential of nano crystalline calcium hydroxyapatite for Tin(II) removal from aqueous solutions: Equilibria and kinetic processes. Arabian Journal of Chemistry, 10, 461-471. (2017).
Guo, H., Jiang, C., Xu, Z., Luo, P., Fu, Z., Zhang, J. Synthesis of bitter gourd-shaped nanoscaled hydroxyapatite and its adsorption property for heavy metal ions. Materials Letters, 241(15), 176-179. (2019).
Guang, S., Ke, F., Shen, Y. Controlled Preparation and Formation Mechanism of Hydroxyapatite Nanoparticles under Different Hydrothermal Conditions. Journal of Materials Science & Technology, 31(8), 852-856. (2015).
Guesmi, Y., Agougui, H., Lafi, R., Jabli, M., Hafiane, A. Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of Methylene Blue dye. Journal of Molecular Liquids, 249, 912-920. (2018).
Guo, Y. P., Yao, Y. b., Ning, C. Q., Guo, Y. J., Chu, L. F. Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method. Materials Letters, 65(14), 2205-2208. (2011).
Hao, L., Lv, Y., Song, H. The morphological evolution of hydroxyapatite on high-efficiency Pb2+ removal and antibacterial activity. Microchemical Journal, 135, 16-25. (2017).
Harj, M., Ciobanu, G. Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Science of The Total Environment, 628–629, 36-43. (2018).
Ioku, K., Yamauchi, S., Fujimori, H., Goto, S., Yoshimura, M. Hydrothermal preparation of fibrous apatite and apatite sheet. Solid State Ionics, 151(1–4), 147-150. (2002).
Jokić, B., Mitrić, M., Radmilović, V., Drmanić, S., Petrović, R., Janaćković, D. Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method. Ceramics International, 37, 167-173. (2011).
Jing, N., Zhou, A. N., Xu, Q. H. The synthesis of super-small nano hydroxyapatite and its high adsorptions to mixed heavy metallic ions. Journal of Hazardous Materials, 353, 89-98. (2018).
Jin, X., Chen, X., Cheng, Y., Wang, L., Hu, B., Tan, J. Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate. Journal of Colloid and Interface Science, 450, 151-158. (2015).
Jung, K. W., Lee, S. Y., Choia, J. W., Lee, Y. J. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chemical Engineering Journal, 369, 529-541. (2019).
Kaflak, A., Kolodziejski, W. Complementary information on water and hydroxyl groups in nanocrystalline carbonated hydroxyapatites from TGA, NMR and IR measurements. Journal of Molecular Structure, 990( 1–3), 263-270. (2011).
Kabeer, K. I. S. A., Vyas, A. K. Utilization of marble powder as fine aggregate in mortar mixes. Construction and Building Materials, 165(20), 321-332. (2018).
Khawar, A., Aslam, Z., Zahir, A., Akbar, I., Abbas, A. Synthesis of Femur extracted hydroxyapatite reinforced nanocomposite and its application for Pb(II) ions abatement from aqueous phase. International Journal of Biological Macromolecules, 122, 667-676. (2019).
Kumar, R., Lakhani, R., Tomar, P. A simple novel mix design method and properties assessment of foamed concretes with limestone slurry waste. Journal of Cleaner Production, 171(10), 1650-1663. (2018).
Laurencin, D., Barrios, N. A., de Leeuw, N. H., Gervais, C., Bonhomme, C., Mauri, F., Chrzanowski, W., Knowles, J. C., Newport, R. J., Wong, A., Gan, Z., Smith, M. E. Magnesium incorporation into hydroxyapatite. Biomaterials, 32(7), 1826-1837. (2011).
Liu, W., Qiana, G. Liu,, L., Zhang, B., Fan, X. A simple method to controlled synthesis of nano hydroxyapatite in different particle size. Materials Letters, 217(15), 177-180. (2018).
Liu, Y., Yan, Y., Seshadri, B., Qi, F., Xu, Y., Bolan, N., Zheng, F., Sun, X., Han, W., Wang, L. Immobilization of lead and copper in aqueous solution and soil using hydroxyapatite derived from flue gas desulphurization gypsum. Journal of Geochemical Exploration, 184, 239-246. (2018).
Lugo, M. O., Silva, J. C., Muñoz, M. L., Palacios, E., Ramirez, G. P., Cruz, E. R., Montoya, A., Pacheco, A. R. The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological Hg-enriched bone remains. Journal of Archaeological Science: Reports, 15, 213-218. 2017.
Marras, G., Careddu, N. Sustainable reuse of marble sludge in tyre mixtures. Resources Policy, 59, 77-84. (2018).
Mavropoulou, N., Katsiotis, N., Giannakopoulos, J., Koutsodontis, K., Papageorgiou, D., Chaniotakis, E., Katsioti, M., Tsakiridis, P. E. Durability evaluation of cement exposed to combined action of chloride and sulphate ions at elevated temperature: The role of limestone filler. Construction and Building Materials, 124(15), 558-565. (2016).
Mary, R., Sonia, S., Viji, S., Mangalaraj, D., Viswanathan, C., Ponpandian, N. Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism. Applied Surface Science, 361(15), 25-32. (2016).
Meddah, M. S., Lmbachiya, M. C., Dhir, R. K. Potential use of binary and composite limestone cements in concrete production. Construction and Building Materials , 58(15), 193-205. (2014).
Minh, D. P., Tran, N. D., Nzihou, A., Sharrock, P. Hydroxyapatite gel for the improved removal of Pb2+ ions from aqueous solution. Chemical Engineering Journal, 232, 128-138. (2013).
Mondal, C., Ganguly, M., Pal, J., Roy, A., Jana, J., Pa, T. Morphology Controlled Synthesis of SnS2 Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light. Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India. (2014).
Mohandes, F., Masoud, S. N., Fathi, M., Fereshteh, Z. Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism. Materials Science and Engineering: C, 45(1), 29-36. (2014).
Mobasherpour, I., Salahi, E., Pazouki, M. Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite. Journal of Saudi Chemical Society, 15, 105-112. (2011).
Mousa, S. M., Ammar, N. S., Ibrahim, H. A. Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. Journal of Saudi Chemical Society, 20(3), 357-365. (2016).
Mohan, N., Palangadan, R., Fernandez, F. B., Varma, H. Preparation of hydroxyapatite porous scaffold from a ‘coral-like’ synthetic inorganic precursor for use as a bone substitute and a drug delivery vehicle. Materials Science and Engineering: C, 92, 329-337. (2018).
Muliwa, A. M., Leswifi, T. Y., Onyango, M. S. Performance evaluation of eggshell waste material for remediation of acid mine drainage from coal dump leachate. Minerals Engineering, 122(15), 241-250. (2018).
Oubagha, N., Lemlikchi, W., Sharrock, P., Fiallo, M., Mecherri, M. O. Hydroxyapatite precipitation with Hydron Blue dye. Journal of Environmental Management, 203, 807-810. (2017).
Nosrati, H., Mamoory, R. S., Dabir, F., Le, D. Q. S., Bünger, C. E., Perez, M. C., Rodriguez, M. A. Effects of hydrothermal pressure on in situ synthesis of 3D graphene- hydroxyapatite nano structured powders. Ceramics International, 45(2), 1761-1769. (2019).
Nosrati, H., Mamoory, R. S., Dabir, F., Perez, M. C., Rodriguez, M. A., Le, D. Q. S., Bünger, C. E. In situ synthesis of three dimensional graphene-hydroxyapatite nano powders via hydrothermal process. Materials Chemistry and Physics, 222, 251-255. (2019).
Pajchel, L., Kowalska, V., Smolen, D., Kedziersk, A., Pietrzykowsk, E., Lojkowski, W., Kolodziejski, W. Comprehensive structural studies of ultra-fine nanocrystalline calcium hydroxyapatite using MAS NMR and FT-IR spectroscopic methods. Materials Research Bulletin, 48, 4818-4825. (2013).
Pawar, R. R., Lalhmunsiama, Bajaj, H. C., Lee, S. M. Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies. Journal of Industrial and Engineering Chemistry, 34, 213-223. (2016).
Panda, R. N., Hsieh, M. F., Chung, R. J., Chin, T. S. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. Journal of Physics and Chemistry of Solids, 64(2), 193-199. (2003).
Qi, Y., Shen, J., Jiang, Q., Jin, B., Chen, J., Zhang, X. The morphology control of hydroxyapatite microsphere at high pH values by hydrothermal method. Advanced Powder Technology, 26(4), 1041-1046. (2015).
Rhaiti, H., Laghzizil, A., Saoiabi, A., Asri, S. E., Lahlil, K., Gacoin, T. Surface properties of porous hydroxyapatite derived from natural phosphate. Materials Chemistry and Physics, 136(2–3), 1022-1026. (2012).
Rivas, M., del Valle, L. J., Turon, P., Puiggalí, J., Alemán, C. Influence of the atmosphere conditions in the structure, properties and solubility of fluorine-substituted hydroxyapatites. Materials Chemistry and Physics, 226, 279-289. (2019).
Rujitanapanich, S., Kumpapan, P., Wanjanoi, P. Synthesis of Hydroxyapatite from Oyster Shell via Precipitation. Energy Procedia, 56, 112-117. (2014).
Sahu, K., Kuriakose, S., Singh, J., Satpati, B., Mohapatra, S. Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes. Journal of Physics and Chemistry of Solids, 121, 186-195. (2018).
Salah, T. A., Mohammad, A. M., Hassan, M. A., El-Anadouli, B. E. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1571-1577. (2014).
Sabu, U., Logesh, G., Mohammad, Joy, R. A., Balasubramanian, M. Microwave assisted synthesis of biomorphic hydroxyapatite. Ceramics International, 45(6), 6718-6722. (2019).
Shahat, A., Awual, M. R., Khaleque, M. A., Alam, M. Z., Naushad, Mu., A. M., Chowdhury, S. Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media. Chemical Engineering Journal, 273, 286-295. (2015).
Sherbiny, S. E., El-Sheikh, S. M., Barhoum, A. Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application. Powder Technology, 279, 290-300. (2015).
Snoeyink, V. L., Jenkins, D. (1982). Water Chemistry.
Stötzel, C., Müller, F. A., Reinertc, F., Niederdraenk, F., Barralet, J. E., Gbureck, U. Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloids and Surfaces B: Biointerfaces, 74(1), 91-95. (2009).
Touny, H., Saleh, M. M. Fabrication of biphasic calcium phosphates nanowhiskers by reflux approach. Ceramics International, 44(14), 16543-16547. 2018.
Torkaman, J., Ashori, A., Momtazi, A. Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Construction and Building Materials, 50(15), 432-436. (2014).
Tunc, E. T. Recycling of marble waste: A review based on strength of concrete containing marble waste. Journal of Environmental Management, 231(1), 86-97. (2019).
Turgut, P. Properties of masonry blocks produced with waste limestone sawdust and glass powder. Construction and Building Materials, 22(7), 1422-1427. (2008).
Venkatesan, S., Hassan, M., Ryu, H. J. Adsorption and immobilization of radioactive ionic-corrosion-products using magnetic hydroxyapatite and cold-sintering for nuclear waste management applications. Journal of Nuclear Materials, 514, 40-49. (2019).
Waghmare, S. D., Jadhav, V. V., Gore, S. K., Yoon, S. J., Ambade, S. B., Lokhande, B. J., Mane, R. S. Sung-Hwan Han. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures. Materials Research Bulletin, 47, 12, 4169-41732012. (2012).
Wang, Y. J., Chen, J. H., Cui, Y. X., Wang, S. Q., Zhou, D. M. Effects of low-molecular-weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles. Journal of Hazardous Materials, 162(2–3), 1135-1140. (2009).
Wang, Y. J., Chen, J. D., Wei, K., Zhang, S. H., Wang, X. D. Surfactant-assisted synthesis of hydroxyapatite particles. Materials Letters, 60(27), 227-3231. (2006).
Wang, Y. Y., Liu, Y. X., Lu, H. H., Yang, R. Q., Yang, S. M. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. Journal of Solid State Chemistry, 261, 53-61. (2018).
Webler, G. D., Rodrigues, W. C., Silva, A. E. S., Silva, A. O. S., Fonseca, E. J. S., Degenhardt, M. F. S., Oliveira, C. L. P., Otubo, L., Filho, D. A. B. Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method. Applied Surface Science, 436, 141-151. (2018).
Wei, W., Sun, R., Jin, Z., Cui, J., Wei, Z. Hydroxyapatite–gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution. Applied Surface Science, 292, 1020-1029. (2014).
Xia, X., Chen, J., Shen, J., Huang, D., Duan, P., Zou, G. Synthesis of hollow structural hydroxyapatite with different morphologies using calcium carbonate as hard template. Advanced Powder Technology, 29(7), 1562-1570. (2018).
Xia, X., Shen, J., Cao, F., Wang, C., Tang, M., Zhang, Q., Wei, S. A facile synthesis of hydroxyapatite for effective removal strontium ion. Journal of Hazardous Materials, 368, 326-335. (2019).
Xiao, X., Yang, L., Zhou, D., Zhou, J., Tian, Y., Song, C., Liu, C. Magnetic γ-Fe2O3/Fe-doped hydroxyapatite nanostructures as high-efficiency cadmium adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 555(20), 548-557. (2018).
Xuan, T. C., Trung, N. N., Pham, V. H. Comparative characterization of microstructure and luminescence of europium doped hydroxyapatite nanoparticles via coprecipitation and hydrothermal method. Optik, 126(24), 5019-5021. (2015).
Yin, H., Zhang, C., Yin, H., Gao, D., Shen, L., Wang, A. Hydrothermal conversion of glycerol to lactic acid catalyzed by Cu/hydroxyapatite, Cu/MgO, and Cu/ZrO2 and reaction kinetics. Chemical Engineering Journal, 288, 332-343. (2016).
Zhang, G., Chen, J., Yang, S., Yu, Q., Wang, Z., Zhang, Q. Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method. Materials Letters. 65, 572-574. (2011).
Zhu, H., Zhang, Z., Xu, J., Xu, K., Ren, Y. An experimental study of micro-machining of hydroxyapatite using an ultrashort picosecond laser. Precision Engineering, 54, 154-162. (2018).
Zhou, J., Yao, T., Cao, D., Lian, J., Lu, F. In-situ TEM study of radiation-induced amorphization and recrystallization of hydroxyapatite. Journal of Nuclear Materials, 512, 307-313. (2018).
Zhang, M., Liu, C., Sun, J., Zhang, X. Hydroxyapatite/diopside ceramic composites and their behaviour in simulated body fluid. Ceramics International, 37, 2025-2029. (2011).
Zhang, X., Vecchio, K. S. Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells. Materials Science and Engineering: C, 26, 1445-1450. (2006).
Zhang, X., Vecchio, K. S. Hydrothermal synthesis of hydroxyapatite rods. Journal of Crystal Growth, 308(1), 133-140. (2007).
Zheng, X., Hui, J., Li, H., Zhu, C., Hua, X., Ma, H., Fan, D. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods. Materials Science and Engineering: C, 75, 699-705. (2017).
Zhu, Y., Jiang, Y., Zhu, Z., Deng, H., Ding, H., Li, Y., Zhang, L., Lin, J. Preparation of a porous hydroxyapatite-carbon composite with the bio-template of sugarcane top stems and its use for the Pb(II) removal. Journal of Cleaner Production, 187, 650-661. (2018).
王基修,三聚磷酸鈉對微波輔助合成氫氧基磷灰石粉末之影響,國立虎尾科技大學材料學與綠色能源工程研究所,碩士論文,2011。
王忠偉,大理石廢料與LED照明結合應用之研究,國立台北科技大學建築系建築與都市設計碩士班,碩士論文,2016。
石材加工業資源化應用技術手冊,經濟部工業局、財團法人台灣綠色生產力基金會,2005。
台灣塑膠公司產品型錄,台灣塑膠工業股份有限公司,http://www.fpc.com.tw/fpcw/index.php?op=proD&con=2&d=3,2015。
周志勳,消費者購買大理石精品動機模式-虛榮心、與符號互動之角色,東海大學高階經營管理碩士在職專班,碩士論文,2013。
施威任,奈米級氫氧基磷灰石之合成及燒結,國立成功大學材料科學與工程學系,碩士論文,2007。
黃日輝,TFT-LCD業鋁蝕刻製程含磷廢水最佳可行控制技術評估,國立交通大學工學院專班永續環境科技學程,碩士論文,2008。
謝國鎔,含碳酸鈣廢棄物合成氫氧基磷灰石及其吸附應用,國立成功大學資源工程學系碩博士班,博士論文,2013。
羅康維,還原碴、水洗灰與泥渣類廢棄物共燒製水泥之水化特性研究,國立宜蘭大學環境工程系碩士班,碩士論文,2014。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊