跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/28 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許景喻
研究生(外文):Jing-Yu Xu
論文名稱:對矽基電子施體自旋量子位元CNOT邏輯閘基於取樣法之最佳化控制
論文名稱(外文):Sampling-based Optimal Control Method for CNOT Gates of Donor Electron Spin qubits in Silicon
指導教授:管希聖
指導教授(外文):Hsi-Sheng Goan
口試委員:周忠憲蘇正耀
口試委員(外文):Chung-Hsien ChouZheng-Yao Su
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:55
中文關鍵詞:量子電腦最佳化控制方法矽基電子施體自旋量子位元量子邏輯閘量子位元
DOI:10.6342/NTU201903400
相關次數:
  • 被引用被引用:0
  • 點閱點閱:487
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現實的量子電腦(quantum computer)皆會受到退相干(decoherence)以及雜訊(noise)的影響而產生誤差。因此,為了建造實用的量子電腦,我們必須找尋一組方法,例如:最佳化控制方法(optimal control method),用以降低誤差。
在這篇論文裡,我們以矽基電子施體自旋量子位元(donor electon spin qubits in silicon)之架構為基礎來來進行我們的研究。矽基電子施體自旋量子位元為現今量子電腦的候選系統之一,具有相對長的弛緩時間( $T_{1}^{*}$)褪相時間($T_{2}^{*}$)。然而,在建構二位元(two-qubit)量子邏輯閘時,此系統面臨量子位元間距(separation)之不準確性(uncertainty)所造成的誤差,由於量子位元間的交互作用(interaction)對其位置的準確度相當敏感,因此,在此篇論文中,我們透過最佳化方法找到一系列系統參數(system parameter)以架構一組可以容忍不準確性所造成的誤差的脈衝波。在論文的開始,我們將介紹矽基電子施體自旋量子位元,接著是考量實驗上的限制後所選擇的脈衝波波型,與取樣法之最佳化控制。綜合以上考量,我們找到一組能建構受控反閘(CNOT gate)之波形參數,能在保真度99\%的限制下,容忍10\%的量子位元間距誤差。
Every realistic quantum computer inevitably suffers from decoherence and noise, resulting in errors. Hence, for quantum computing to be viable, delving into the errors for quantum systems and looking for a method, such as the optimal control method for error suppression, has become a critical task. This thesis investigates quantum gate operations for quantum computing based on the electron spins of donors in silicon, which is one of the most promising candidates for spin-based quantum computation as the electron spin qubits have relatively long $T_{1}^{*}$ and $T^*_{2}$ times. However, this system faces a stiff challenge on implementing two-qubit gates owing to the strength of the interaction between qubits depending sensitively on the exact positioning of qubits, which is not precisely known. Therefore, in this thesis, we focus on the discussion of the errors coming from this system parameter uncertainty and use an optimal control method to try to find error-suppression pulses for two-qubit gates. The thesis is organized as follows: First, we introduce the electron spins of an exchange-coupled pair of donors in silicon and use the ability to set the donor nuclear spins in arbitrary states to enlarge the effective magnetic detuning. Then, we present an optimal control method, which combines the sampling-based learning control and the gradient-free Nelder-Mead algorithm, to search for error-suppression pulses. Lastly, we present our result of a smooth pulse set for a two-qubit CNOT gate that can tolerate the parameter uncertainty error of about 10% of exchange interaction, while achieving a gate fidelity of 99%.
Contents
誌謝 i
摘要 ii
Abstract iii
1 Introduction 1
1.1 Review...................................1
1.2 Motivation..................................2
2 Introduction of Quantum Computing 4
2.1 Qubit Systems................................5
2.1.1 Qubits and Quantum Gates.....................5
2.1.2 The Quantification of Errors: Infidelity..............12
2.2 Introduction of Electron Spins of Donors in Silicon............13
2.2.1 Introduction of Kane’s Quantum Computer............13
2.2.2 The Architecture of Kane’s Quantum Computer..........14
2.2.3 Errors: Noise and Uncertainty...................24
3 Model, Control Scheme, and Optimal Control Method 26
3.1 Pulsing Scheme of the Control Pulses...................26
3.1.1 The AC Microwave Magnetic Field: Bac(t) ...........27
3.1.2 The Voltage Applied to A-gates: A(t) ..............28
3.1.3 The Voltage Applied to J-gates: J(t) ...............29
3.2 Pulsing Setup ................................30
3.3 Modelingthe1/fnoise...........................31
3.4 ConditionandApproximationtoSpeedupCalculation..........32
3.5 SamplingBasedOptimalControlMethod.................33
3.5.1 SamplingandWeighting......................34
3.5.2 MinimizingtheCostFunction...................35
4 ResultsandDiscussion 37
4.1 Results....................................38
4.2 Discussion..................................43
4.2.1 ComparisonbetweentheSine-CubedandtheSine-ShapedPulses
for CNOTGates..........................43
4.2.2 ErrorCompensationPerformanceofTrainedPulses........43
4.2.3 ImprovementofInfidelitywithIncreasedACMWMagneticField44
5 Conclusion 46
5.1 OptimalControlMethod..........................46
5.2 ResultofConstructingaCNOTGate....................47
Bibliography 48
[1] JuhaT. Muhonen,JuanP.Dehollain,ArneLaucht,FayE.Hudson,RachponKalra,
TakeharuSekiguchi,KoheiM.Itoh,DavidN.Jamieson,JeffreyC.McCallum,An-
drew S.Dzurak,andAndreaMorello.Storingquantuminformationfor30secondsin
a nanoelectronicdevice. NatureNanotechnology, 9(12):986–991,December2014.
[2] A.M.Turing.I.—COMPUTINGMACHINERYANDINTELLIGENCE. Mind,
LIX(236):433–460, October1950.
[3] A.M.Turing.OnComputableNumbers,withanApplicationtotheEntschei-
dungsproblem. ProceedingsoftheLondonMathematicalSociety, s2-42(1):230–265,
January 1937.
[4] APreviewofBristlecone,Google’sNewQuantumProcessor.
[5] RyanBabbush,DominicW.Berry,andHartmutNeven.Quantumsimulationof
the Sachdev-Ye-Kitaevmodelbyasymmetricqubitization. Physical ReviewA,
99(4):040301, April2019.
[6] R.Rizzolatti,S.Saggini,M.Ursino,andL.Jia.AnIsolatedMultilevelQuasi-
Resonant Multi-PhaseSingle-StageTopologyfor380VVRMApplications. IEEE
TransactionsonPowerElectronics, pages1–1,2019.
[7] KatharinaSchneider,YannickBaumgartner,SimonHönl,PolWelter,HerwigHahn,
Dalziel J.Wilson,LukasCzornomaz,andPaulSeidler.Optomechanicswithone-
dimensional galliumphosphidephotoniccrystalcavities. Optica, 6(5):577–584,
May 2019.
[8] M.Ganzhorn, D.J. Egger,P.Barkoutsos,P.Ollitrault,G.Salis,N.Moll,M.Roth,
A. Fuhrer,P.Mueller,S.Woerner,I.Tavernelli,andS.Filipp.Gate-EfficientSimu-
lation ofMolecularEigenstatesonaQuantumComputer. Physical ReviewApplied,
11(4):044092,April2019.
[9] SergejMarkmann,ChristianReichl,WernerWegscheider,andGianSalis.Universal
nuclear focusingofconfinedelectronspins. NatureCommunications, 10(1):1–8,
March 2019.
[10] EdwinPednault,JohnA.Gunnels,GiacomoNannicini,LiorHoresh,Thomas
Magerlein, EdgarSolomonik,ErikW.Draeger,EricT.Holland,andRobertWis-
nieff.Breakingthe49-QubitBarrierintheSimulationofQuantumCircuits.
arXiv:1710.05867 [quant-ph], October2017.
[11]AniNersisyan,StefanoPoletto,NasserAlidoust,RiccardoManenti,RussRenzas,
Cat-VuBui,KimVu,TylerWhyland,YuvrajMohan,EyobA.Sete,SamStanwyck,
Andrew Bestwick,andMatthewReagor.Manufacturinglowdissipationsupercon-
ducting quantumprocessors. arXiv:1901.08042 [physics,physics:quant-ph], Jan-
uary 2019.
[12] SabrinaS.Hong,AlexanderT.Papageorge,PrasahntSivarajah,GenyaCrossman,
Nicolas Dider,AnthonyM.Polloreno,EyobA.Sete,StefanW.Turkowski,Mar-
cus P.daSilva,andBlakeR.Johnson.DemonstrationofaParametrically-Activated
Entangling GateProtectedfromFluxNoise. arXiv:1901.08035 [quant-ph], January
2019.
[13] LovK.Grover.AFastQuantumMechanicalAlgorithmforDatabaseSearch.In
Annual AcmSymposiumonTheoryofComputing, pages212–219.ACM,1996.
[14] LovK.Grover.QuantumComputersCanSearchRapidlybyUsingAlmostAny
Transformation. Physical ReviewLetters, 80(19):4329–4332,May1998.
[15] LovK.Grover.QuantumMechanicsHelpsinSearchingforaNeedleinaHaystack.
Physical ReviewLetters, 79(2):325–328,July1997.
[16] P. W.Shor.Algorithmsforquantumcomputation:Discretelogarithmsandfactoring.
In Proceedings35thAnnualSymposiumonFoundationsofComputerScience, pages
124–134, November1994.
[17] P.Shor.Polynomial-TimeAlgorithmsforPrimeFactorizationandDiscreteLoga-
rithms onaQuantumComputer. SIAM JournalonComputing, 26(5):1484–1509,
October 1997.
[18] DeutschDavidandJozsaRichard.Rapidsolutionofproblemsbyquantumcom-
putation. ProceedingsoftheRoyalSocietyofLondon.SeriesA:Mathematicaland
Physical Sciences, 439(1907):553–558,December1992.
[19] MohdAsadSiddiquiandTabishQureshi.QuantumKeyDistributionwithQubit
Pairs. Journal ofQuantumInformationScience, 04(03):129–132,2014.
[20] OlegGoryachkinandAndreyBerezovskiy.BlindSignalProcessinginTelecommu-
nication SystemsBasedonPolynomialStatistics. American JournalofComputa-
tional Mathematics, 04(03):233–241,2014.
[21] MasakazuYoshida,TakayukiMiyadera,andHidekiImai.OntheSecurityofQuan-
tum KeyDistributionPing-PongProtocol. Journal ofQuantumInformationScience,
03(01):16–19, 2013.
[22] MakhamisaSenekane,MhlambululiMafu,andFrancescoPetruccione.Six-State
Symmetric QuantumKeyDistributionProtocol. Journal ofQuantumInformation
Science, 05(02):33–40,2015.
[23] NedraBenletaief,HouriaRezig,andAmmarBouallegue.TowardEfficientQuan-
tum KeyDistributionReconciliation. Journal ofQuantumInformationScience,
04(02):117–128,2014.
[24] TomiH.Johnson,StephenR.Clark,andDieterJaksch.Whatisaquantumsimulator?
EPJ QuantumTechnology, 1(1):1–12,December2014.
[25] I.M. Georgescu,S.Ashhab,andFrancoNori.Quantumsimulation. Reviews of
Modern Physics, 86(1):153–185,March2014.
[26] MariaSchuld,IlyaSinayskiy,andFrancescoPetruccione.Anintroductiontoquan-
tum machinelearning. Contemporary Physics, 56(2):172–185,April2015.
[27] Joong-SungLee,JeonghoBang,SunghyukHong,ChanghyoupLee,KangHeeSeol,
Jinhyoung Lee,andKwang-GeolLee.Experimentaldemonstrationofquantum
learning speedupwithclassicalinputdata. Physical ReviewA, 99(1):012313,Jan-
uary 2019.
[28] VedranDunjko,JacobM.Taylor,andHansJ.Briegel.Quantum-EnhancedMachine
Learning. Physical ReviewLetters, 117(13):130501,September2016.
[29] JacobBiamonte,PeterWittek,NicolaPancotti,PatrickRebentrost,NathanWiebe,
and SethLloyd.Quantummachinelearning. Nature, 549(7671):195–202,Septem-
ber 2017.
[30] T.Yamamoto,YuA.Pashkin,O.Astafiev,Y.Nakamura,andJ.S.Tsai.Demon-
stration ofconditionalgateoperationusingsuperconductingchargequbits. Nature,
425(6961):941–944, October2003.
[31] JohnClarkeandFrankK.Wilhelm.Superconductingquantumbits. Nature,
453:1031–1042, June2008.
[32] JulioT.Barreiro,MarkusMüller,PhilippSchindler,DanielNigg,Thomas
Monz, MichaelChwalla,MarkusHennrich,ChristianF.Roos,PeterZoller,and
Rainer Blatt.Anopen-systemquantumsimulatorwithtrappedions. Nature,
470(7335):486–491, February2011.
[33] JonathanP.Home,DavidHanneke,JohnD.Jost,JasonM.Amini,Dietrich
Leibfried, andDavidJ.Wineland.CompleteMethodsSetforScalableIonTrap
Quantum InformationProcessing. Science, 325(5945):1227–1230,September2009.
[34] H.Häffner,C.F.Roos,andR.Blatt.Quantumcomputingwithtrappedions. Physics
Reports, 469(4):155–203,December2008.
[35] T.F.Watson,S.G.J.Philips,E.Kawakami,D.R.Ward,P.Scarlino,M.Veldhorst,
D. E.Savage,M.G.Lagally,MarkFriesen,S.N.Coppersmith,M.A.Eriksson,and
L. M.K.Vandersypen.Aprogrammabletwo-qubitquantumprocessorinsilicon.
Nature, 555(7698):633–637,March2018.
[36] M.Veldhorst,C.H.Yang,J.C.C.Hwang,W.Huang,J.P.Dehollain,J.T.Muhonen,
S. Simmons,A.Laucht,F.E.Hudson,K.M.Itoh,A.Morello,andA.S.Dzurak.A
two-qubit logicgateinsilicon. Nature, 526(7573):410–414,October2015.
[37] D.M.Zajac,A.J.Sigillito,M.Russ,F.Borjans,J.M.Taylor,G.Burkard,andJ.R.
Petta. ResonantlydrivenCNOTgateforelectronspins. Science, 359(6374):439–
442, January2018.
[38] BEKane.Asilicon-basednuclearspinquantumcomputer.393:5,1998.
[39] KavehKhodjasteh,DanielA.Lidar,andLorenzaViola.ArbitrarilyAccu-
rate DynamicalControlinOpenQuantumSystems. Physical ReviewLetters,
104(9):090501, March2010.
[40] KavehKhodjastehandLorenzaViola.Dynamicalquantumerrorcorrectionofuni-
tary operationswithboundedcontrols. Physical ReviewA, 80(3):032314,September
2009.
[41] JacobR.West,DanielA.Lidar,BryanH.Fong,andMarkF.Gyure.High
Fidelity QuantumGatesviaDynamicalDecoupling. Physical ReviewLetters,
105(23):230503, December2010.
[42] DaoyiDong,ChengzhiWu,ChunlinChen,BoQi,IanR.Petersen,andFrancoNori.
Learning robustpulsesforgeneratinguniversalquantumgates. Scientific Reports,
6:36090, October2016.
[43] D.Dong, C. Chen,R.Long,B.Qi,andI.R.Petersen.Sampling-basedlearningcon-
trol forquantumsystemswithhamiltonianuncertainties.In 52nd IEEEConference
on DecisionandControl, pages1924–1929,December2013.
[44] ChunlinChen,DaoyiDong,RuixingLong,IanR.Petersen,andHerschelA.Rabitz.
Sampling-based learningcontrolofinhomogeneousquantumensembles. Physical
Review A, 89(2):023402,February2014.
[45] ToddJ.Green,JarrahSastrawan,HermannUys,andMichaelJ.Biercuk.Arbitrary
quantum controlofqubitsinthepresenceofuniversalnoise. New JournalofPhysics,
15(9):095004, September2013.
[46] A.Soare,H.Ball,D.Hayes,J.Sastrawan,M.C.Jarratt,J.J.McLoughlin,X.Zhen,
T.J.Green,andM.J.Biercuk.Experimentalnoisefilteringbyquantumcontrol.
NaturePhysics, 10(11):825–829,November2014.
[47] AustinG.Fowler,MatteoMariantoni,JohnM.Martinis,andAndrewN.Cleland.
Surface codes:Towardspracticallarge-scalequantumcomputation. Physical Review
A, 86(3):032324,September2012.
[48] RichardPFeynman.Simulatingphysicswithcomputers.page22.
[49] MichaelA.NielsenandIsaacL.Chuang. Quantum ComputationandQuantumIn-
formation. CambridgeUniversityPress,Cambridge;NewYork,10thanniversary
ed edition,2010.
[50] DavidP.DiVincenzoandIBM.ThePhysicalImplementationofQuantumCompu-
tation. arXiv:quant-ph/0002077, February2000.
[51] G.E.Moore.CrammingMoreComponentsOntoIntegratedCircuits. Proceedings
of theIEEE, 86(1):82–85,January1998.
[52] E.A.Chekhovich,M.N.Makhonin,A.I.Tartakovskii,A.Yacoby,H.Bluhm,K.C.
Nowack, andL.M.K.Vandersypen.Nuclearspineffectsinsemiconductorquantum
dots. NatureMaterials, 12(6):494–504,June2013.
[53] DavidP. DiVincenzo.Realandrealisticquantumcomputers. Nature, 393(6681):113,
May 1998.
[54] L.M.Kettle,H.-S.Goan,SeanC.Smith,C.J.Wellard,L.C.L.Hollenberg,and
C. I.Pakes.NumericalstudyofhydrogeniceffectivemasstheoryforanimpurityP
donor inSiinthepresenceofanelectricfieldandinterfaces. Physical ReviewB,
68(7):075317, August2003.
[55] ArneLaucht,JuhaT.Muhonen,FahdA.Mohiyaddin,RachponKalra,JuanP.De-
hollain, SolomonFreer,FayE.Hudson,MennoVeldhorst,RajibRahman,Gerhard
Klimeck, KoheiM.Itoh,DavidN.Jamieson,JeffreyC.McCallum,AndrewS.Dzu-
rak, andAndreaMorello.Electricallycontrollingsingle-spinqubitsinacontinuous
microwave field. Science Advances, 1(3):e1500022,April2015.
[56] GuilhermeTosi,FahdA.Mohiyaddin,VivienSchmitt,StefanieTenberg,RajibRah-
man, GerhardKlimeck,andAndreaMorello.Siliconquantumprocessorwithrobust
long-distance qubitcouplings. NatureCommunications, 8(1):450,September2017.
[57] ConyersHerringandMichaelFlicker.AsymptoticExchangeCouplingofTwoHy-
drogen Atoms. Physical Review, 134(2A):A362–A366,April1964.
[58] Chia-HsienHuangandHsi-ShengGoan.Robustquantumgatesforstochastictime-
varying noise. Physical ReviewA, 95(6):062325,June2017.
[59] Chia-HsienHuang,Chih-HwanYang,Chien-ChangChen,AndrewS.Dzurak,and
Hsi-Sheng Goan.High-fidelityandrobusttwo-qubitgatesforquantum-dotspin
qubits insilicon. Physical ReviewA, 99(4):042310,April2019.
[60] StevenFinch. Ornstein-Uhlenbeck Process. 2004.
[61] JunYoneda,KentaTakeda,TomohiroOtsuka,TakashiNakajima,MatthieuR.Del-
becq, GilesAllison,TakumuHonda,TetsuoKodera,ShunriOda,YusukeHoshi,
Noritaka Usami,KoheiM.Itoh,andSeigoTarucha.Aquantum-dotspinqubitwith
coherence limitedbychargenoiseandfidelityhigherthan99.9%. NatureNanotech-
nology, 13(2):102–106,February2018.
[62] EdoardoMilotti. Linear processesthatproduce1/forflickernoise. Physical Review
E, 51(4):3087–3103,April1995.
[63] RachponKalra,ArneLaucht,CharlesD.Hill,andAndreaMorello.RobustTwo-
Qubit GatesforDonorsinSiliconControlledbyHyperfineInteractions. Physical
Review X, 4(2):021044,June2014.
[64] J.R.Marko.BroadsaturationeffectandthebackgroundEPRlineinphosphorus-
doped silicon. Physics LettersA, 27(2):119–120,June1968.
[65] D.JéromeandJ.M.Winter.ElectronSpinResonanceonInteractingDonorsin
Silicon. Physical Review, 134(4A):A1001–A1007,May1964.
[66] TatsuoShimizu.ESRSpectraofDonorClusters. Journal ofthePhysicalSocietyof
Japan, 25(4):1021–1024,October1968.
[67] J.H.Pifer.Spindelocalizationinphosphorusdonorpairsinsilicon. Physical Review
B, 32(11):7091–7097,December1985.
[68] CharlesP.Slichter.SpinResonanceofImpurityAtomsinSilicon. Physical Review,
99(2):479–480, July1955.
[69] J.A.NelderandR.Mead.ASimplexMethodforFunctionMinimization. The
Computer Journal, 7(4):308–313,January1965.
[70] K.McKinnon.ConvergenceoftheNelder–MeadSimplexMethodtoaNonstation-
ary Point. SIAM JournalonOptimization, 9(1):148–158,January1998.
[71] M.J.D.Powell.Onsearchdirectionsforminimizationalgorithms. Mathematical
Programming, 4(1):193–201,December1973.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top