(3.238.8.102) 您好!臺灣時間:2020/10/22 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:余聰明
研究生(外文):Tsung-Ming Yu
論文名稱:斷層錯動、地殼變位及強地動與地震災害相關性之研究:以1935年及1999年台灣中部兩次地震為例
論文名稱(外文):The Relations of Earthquake Disasters with Respect to Surface Fault Rupture, Crustal Movement, and Strong Ground Motion:Using Two Central Taiwan Earthquakes in 1935 and 1999 as Examples
指導教授:蔡義本蔡義本引用關係
指導教授(外文):Yi-Ben Tsai
學位類別:博士
校院名稱:國立中央大學
系所名稱:地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:209
中文關鍵詞:斷層錯動地殼變位強地動地震災害關刀山地震集集地震
外文關鍵詞:Guan-Dao-Shan earthquakeChi-Chi earthquakeEarthquake DisastersStrong Ground MotionCrustal MovementSurface Fault Rupture
相關次數:
  • 被引用被引用:11
  • 點閱點閱:294
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:6
本研究選擇侵襲臺灣中部地區之關刀山及集集兩大災害性地震做為研究分析對象,除因它們是臺灣百年來災情最嚴重震害,造成十分慘重的人文、經濟損失,也因這兩次地震之災害資料,彙集保存相當完整,可分析性極高。本文研究方向先從關刀山地震與集集地震各鄉鎮之災害資料開始,進一步細分到最小行政單位村里,作一系列的分析探討,主要是因為各鄉鎮及村里的震害資料均相當完備。另一方面,這兩大地震均有地震斷層造成的地表錯動。且兩次地震斷層的屬性又不相同,因此可作為斷層類型對震害衝擊效應的相對評比,包括災害空間分佈型態與斷層線對稱與否,斷層錯動是否加重災害,強地動與災害之間的關連性,其結果可作為日後對震害災損評估的參考。大規模地震通常伴隨地表斷層破裂錯動與區域性之地殼變位。這些地殼變位直接反應地震斷層的類型與滑移量之大小。分析大地震之地殼變位,有助於吾人對地震所造成之房屋倒塌與人員傷亡的了解。地震時各地的強烈地動性質,更是造成地震災害的最主要原因。關刀山地震與集集地震的斷層錯動,斷層週圍區域性地殼變位,以及各地強地動性質,均有極詳細的觀測與調查數據。因此本研究特就這三個震害主要原因,針對各村里實際震害資料,進行定性與定量的比對分析與研究。所得結果綜述如下:1935年關刀山地震有兩段地震斷層,其中北段的獅潭斷層上與其兩側各村里的房屋全倒率較高(最高為三灣庄大河村99.6%),而死亡率較低(最高為南庄南富村5.16%)。西南段的屯子腳斷層上與其兩側各村里,不但房屋全倒率很高(最高為神岡庄新庄子村100%),死亡率也很高(最高為神岡庄新庄子村14.7%)。由人口數/住戶數結構可看出獅潭斷層帶與兩側,與屯子腳斷層帶與兩側相差達3.2倍,沿獅潭斷層多為丘陵山區死亡率較低,可能是因為山區住戶稀少,且多為客家農民,有清晨早起耕作習慣之故。而屯子腳斷層兩側以平地為主,各村里人口與住戶數密集,當地居民沒有清晨早起習慣之故。由斷層帶與非斷層帶上各村里震害分析,發現關刀山地震呈對稱性震害分佈。1999年集集地震造成震害之關鍵原因包括大幅度斷層錯動及激烈強地動,造成大規模山崩,以及土塊厝與五樓以下鋼筋混凝土、高樓層集合性住宅大量倒塌等。都會區以集合性住宅倒塌為主,並造成人口密集罹難現象,但因每個里的人口數眾多,而使平均死亡率降低,例如台北市松山區慈祐里因東星大樓倒塌而使84人死亡,死亡率高達全樓人口之21%,但僅為全里人口之1.28%,是典型都會區集合性住宅震害之痛。另外都會型村里的土塊厝比率較少,鋼筋混凝土建築物較多,整體建築物具有較佳耐震能力,因此一般死亡率也較低。而死亡率高的各鄉村型村里的住戶建築物構造以土塊厝和低層鋼筋混凝土造居多,例如東勢鎮粵寧里、中寮鄉永平村,其住屋類型以五樓以下鋼筋混凝土或加強磚造建築物佔多數,又竹山鎮山崇里(斷層帶上)有部分係因土塊厝倒塌罹難。此外草嶺村死亡率為4.33%,乃因有36人被草嶺地區順向坡山崩掩埋所致。集集地震時破裂錯動的車籠埔斷層為向東傾斜30°的逆衝斷層,因而位於西側的下盤並未產生大幅度位移,且地動強度明顯較低,因此雖然斷層西側地區之人口與住戶均較密集,但震害較輕。反之,斷層東側上盤各村里之震害則普遍嚴重。總之由斷層帶與兩側非斷層帶上各村里震害的分析比較,我們發現集集地震呈非對稱性震害分佈。本研究接著比較前後兩次震災的房屋全倒率及人口死亡率是否有所改善。首先,台灣早期建築之主要類型為土造與木造建築物,房屋結構之耐震性能極差。當1935年關刀山地震發生時,強烈震動造成大量破壞倒塌,進而造成人員傷亡。當時另有一些未加固的磚造建築物,當1935年關刀山地震力,超出牆體所能承受時,便使牆體破裂倒塌,磚塊四散、掉落,變成傷害居民生命之最大威脅,其傷害力應不下於土構造。其次,台灣現代建築物主要類型已多由鋼筋混凝土及鋼構造所取代。在1999年集集地震的強烈地動作用下,常見之破壞現象有地面層柱頭爆裂、各層短柱剪力破壞、磚牆倒塌或斷裂、混凝土牆剪力破壞、或地基失敗引致傾斜、崩塌,連帶造成人員傷亡。因現代建築物之設計目標本就要求房屋即使在倒塌時,必需儘量保留人員求生空間,故有減少傷亡機率之功效。本研究在比較前後相隔64年的關刀山與集集地震時的房屋全倒與人口死亡資料之後,發現現代建築結構類型在減少震害效應上確實有顯著改進。這包括總平均房屋全倒率由前者之32.5%降為後者之19.2%。而總平均人口死亡率,更由前者之1.12%,鉅幅降低為後者之0.28%。換言之,我們透過現代建築耐震設計規範之頒行,已使建築物普遍具備適當的耐震性能,確實可有效減少地震時造成房屋倒塌機率,進而減少地震對人員傷亡之效果,這是具有重要正面意義的啟示。最後,本研究對集集地震時,台中縣及南投縣各鄉鎮死亡人口之年齡分佈加以分析,獲得以下公式: Y% = 0.00022X 2 - 0.01X + 0.16在上式中,Y%代表死亡率,X表示年齡。由上式可見大地震時,不同年齡層的人口,受到致命威脅之程度顯著不同。尤其對55歲以上的老年人口的威脅大增。這個發現具有兩點重要意義,其一是地震時對人命安全的保護對象,應特別注重年齡層大的族群。其二是雖台中縣與南投縣的一般人口及死亡人口之年齡層分佈各有不同,但是人口死亡率之年齡層分佈,却幾乎完全相同,頗值得深入探索其原因。未來可利用這次地震人口死亡年齡分佈的公式,按各鄉鎮人口之年齡分佈,概略推估未來地震時,可能造成之死亡人口數,做為研擬地震防救災緊急應變計畫之參考。
In this paper we studied two disastrous Guan-Dao-Shan and Chi-Chi earthquakes in Central Taiwan. They were the two most devastating earthquakes in last hundred years in Taiwan. Equally important, the societal and scientific records of the earthquakes were compiled and preserved very well. We started to analyze by townships, then proceeded to analyze by villages. The loss data of townships and villages are complete. Meanwhile, surface ruptures happened in both earthquakes. The fault types were different associated with these two earthquakes. We analyzed the relation of disaster distribution with respect to fault surface, regional surface movement, and strong ground motion. We hope the results will be useful for loss estimation of future earthquakes.
Surface fault ruptures and regional surface movements usually occurred in large earthquakes. By comparing the patterns of these phenomena in large earthquakes, we can study their relation with house collapse and human fatality by earthquake. The fault ruptures, crustal movements, and strong ground motions of the Guan-Dao-Shan and Chi-Chi earthquakes were well recorded by observations and surveys. We compared both qualitatively and quantitatively these three causes with the disaster data of the affected townships and villages.
There were two segments of fault in the 1935 Guan-Dao-Shan earthquake. In the neighborhood of northern segment (Shihtan fault), the house collapse rate was high (the highest was 99.6% in Dahe village, Sanwan township). But the death rate was relatively low (the highest is 5.16% in Nanfu village, Nanjhuang township). In the neighborhood of southwestern segment (Tun-zu-chiao fault), not only the house collapse rate was high (the highest is 100% in Hsin-Tsuang-Zu village, Shengang township), but also the death rate was high (the highest was 14.7% in Hsin-Tsuang-Zu village, Shengang township). By comparing the distaster data between the fault-zone and non-fault-zone areas, we found symmetric patterns of disaster distribution with respect to fault trace for the Guan-Dao-Shan earthquake.
Disasters by the Chi-Chi earthquake were caused by several factors, including fault rupture, strong ground motion, landslide, and house collapse. When the collapsed buildings were located in urban areas, the fatality was concentrated. But because the population is high, thus the average fatality rate is low. For example, there were 84 fatalities in the Donhsin building, in Songshan district of Taipei city. The local fatality rate was 21 % of the building, but was only 1.28 % of the city ward. It was a typical destruction pattern of urban buildings. Besides, the seismic resistance of buildings in urban areas is usually stronger than the buildings in the country areas. The fatality rate is generally low. Many collapsed buildings were made of mud bricks in the country areas. The fatality rate in the Tsaolin village was 4.33 %, because 36 people were buried by a big landslide. The Chelungpu fault was a thrust fault that dips east in the Chi-Chi earthquake. The footwall on the west side did not move much and the seismic intensity was relatively low. Thus the house collapse rate and human fatality rate were low in the west side of the fault, even the population there was high. On the contrary, the damages were severe in the villages in the hanging-wall areas on the east side. In summary, the patterns of both collapsed house and human fatality about the fault zone showed asymmetric distribution with respect to the fault trace in the Chi-Chi earthquake.
We also compared the difference of house collapse rate and human fatality rate between these two earthquakes. First, most houses were made by mud bricks and wood in early Taiwan. The structural design against large earthquakes was absent. When the Guan-Dao-Shan earthquake occurred, many houses collapsed and people were killed. In addition, houses made by bricks also collapsed during the Guan-Dao-Shan earthquake. The falling debris hurt many residents when houses collapsed. Second, main types of modern buildings in Taiwan are made by reinforced concrete and steel. Although the destruction of structures were widespread during the Chi-Chi earthquake, owing to the goal of modern architecture design emphasizing some free space for survival of people even when the building collapses. It has effectively reduced the probabilities of fatality.

In this study, we have found the modern building types have significantly reduced the damage from earthquake by comparing the disasters of Guan-Dao-Shan and Chi-Chi earthquakes. The average house collapse rate decreased from 32.5 % to 19.2 % and the average fatality rate greatly decreased from 1.12 % to 0.28 % with time. In other word, the modern codes for seismic design of buildings are really effective in reducing the probabilities of house collapse in large earthquakes.
Finally, we also analyzed the age distributions of fatality for different towns in both Taichung and Nantou counties during the Chi-Chi earthquake. We obtained an equation as follows:
Y% = 0.00022X2 – 0.01X + 0.16
where Y% means the age-specific fatality rate in percentage, and X represents age. According to above equation, the fatalities are significantly different for different ages, especially for age older than 55 years old. There are two significant implications. First, the protection for people during earthquake, should focus especially on old age group. Second, the human fatality rates are almost the same, even though the age dependence of general population and earthquake victims were different for Taichung and Nantou counties. The reasons are worth for further study in the future. We can estimate potential fatalities in future earthquakes based on above age dependence equation of earthquake fatalities by using current population distributions. The results can provide useful information for seismic loss estimation.
第一章 緒 論 1
1.1 研究動機 1
1.2 研究方法與目標 1
1.3 文獻回顧 2
1.4 內容大綱 5
第二章 台灣中部兩次地震災區之地質概述 7
2.1 1935年關刀山地震及1999年集集地震斷層概述 7
2.2 地震斷層附近之地質 9
2.3 地震斷層附近之地層 19
2.4研究區之地質構造分區 22
第三章 1935年關刀山及1999年集集地震各街庄(鄉鎮市)
及村里災害數據之收集與彙整 25
3.1 地震災害之可能肇因:斷層錯動、強地動、地殼變位 25
3.2 1935年關刀山地震及其災害之敘述 27
3.3 1935年關刀山地震各街庄及村里房屋倒塌數據GIS地理資料庫之建置 33
3.4 1935年關刀山地震各街庄及村里人員死亡數據GIS地理資料庫之建置 34
3.5 1935年關刀山地震各街庄及村里房屋倒塌與人員死亡之相關性 34
3.6 1999年集集地震及其災害之敘述 41
3.7 1999年集集地震各鄉鎮市及村里房屋倒塌數據GIS地理資料庫之建置 46
3.8 1999年集集地震各鄉鎮市及村里人員死亡數據GIS地理資料庫之建置 46
3.9 1999年集集地震各鄉鎮市及村里房屋倒塌與人員死亡之相關性 47
3.10 集集地震房屋損害與人員傷亡分析探討 55
3.11 集集地震人員死亡百分率之年齡差別分析 62
3.12 集集地震震後搜救過程與關刀山地震及日本阪神地震之比較分析 63
第四章 斷層錯動與房屋倒塌之相關性研究 66
4.1關刀山地震斷層錯動的影響 67
4.2 1935年關刀山地震斷層通過各村里房屋倒塌之分佈 71
4.3 1935年關刀山地震斷層鄰近各村里房屋倒塌之分佈 71
4.4 1999年集集地震斷層通過各村里房屋倒塌之分佈 81
4.5 1999年集集地震斷層鄰近各村里房屋倒塌之分佈 85
第五章 地殼變位與房屋倒塌地理分佈之對比研究 97
5.1 1935年關刀山地震水平地殼變位與各村里房屋倒塌分佈之相關性 97
5.2 1999年集集地震水平地殼變位(斷層東側)與
各村里房屋倒塌分佈之相關性 101
5.3 1999年集集地震垂直地殼變位(斷層東側)與
各村里房屋倒塌分佈之相關性 104
第六章 地動強度與房屋倒塌相關性之研究 109
6.1 1935年關刀山地震地動強度與各村里房屋倒塌之相關性 109
6.2 1999年集集地震地動強度與各村里房屋倒塌之相關性 123
6.3 1935年關刀山及1999年集集地震各震度房屋全倒率之比較 139
第七章 結 論 與 討 論 159
參考文獻 165
附錄 170
英文摘要 207
Alexander, D., 1999. Natural disasters. Kluwer Academic Publishers, 632 p.
Archuleta, R. A., 1984. A faulting model for the 1979 Imperial Valley earthquake, J. Geophys. Res., 89, 4559-4585.
Biq, C., 1972. Western Taiwan thrust, active or inactive? Acta Geol. Taiwan, 15, 63-75.
Bonilla, M. G., 1977. Summary of Quaternary faulting and elevation changes in Taiwan, Mem. Geol. Soc. China, 2, 43-55.
Chang, C. H., Y. M. Wu, T. C. Shin, and C. Y. Wang, 2000. Relocation of the 1999 Chi-Chi earthquake in Taiwan, TAO, 11, 581-590.
Chang, S. L., 1971. Subsurface geologic study of the TaiChung Basin, Taiwan, Petro. Geol. Taiwan, 8, 21-45.
Chen, Y. G., W. S. Chen, J. C. Lee, Y. H. Lee, C. T. Lee, H. C. Chang and C. H. Lo, 2001. Surface rupture of 1999 Chi-Chi earthquake yields insights on active tectonics of central Taiwan, Bull. Seism. Soc. Am., 91. 977-985.
Coburm, A.W., R. J. Spence, and A. Pomonis, 1992. Factors determining human casualties mortality prediction in building collapse [A]. The tenth world conference on earthquake engineering [C]. 10. 5989-5994.
Coburn, A., and R. Spence, 1992. Earthquake Protection, John Wiley & Sons, Chichester, 355 p.
Crampin, S., 1978. Seismic wave propagation though a cracked solid: polarization as a possible dilatancy diagnostic. Geophys. J. R. Astr. Soc., 53, 467-496.
Crampin, S., 1981. A review of wave motion in anisotropic and cracked elastic-media, Wave Motion, 3, 343-391.
Crampin, S., 1984a. An introduction to wave propagation in anisotropic media. Geophys. J. R. Astr. Soc., 76, 17-28.
Crampin, S., 1984b. Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. R. Astr. Soc., 76, 135-145.
Day, S. M., 1982. Three-dimensional simulation of spontaneous rupture; the effect of non-uniform pre-stress, Bull. Seism. Soc. Am., 72, 1881-1902.
Elishewitz, B., 1963. A new interpretation of the structure of the Miaoli area in the light of the decollement tectonics of northern Taiwan, Petro. Geol. Taiwan, 2, 21-45.
ERI, 1936. Paper and reports on the Formosa Earthquake of 1935, Bull. Earthq. Res. Inst., Suppl. III, 238 p.
Lee, W. H. K., T. C. Shin, K. W. Kuo, and K. C. Chen, 1999. CWB freefield strong-motion data from the 921 Chi-Chi earthquake, digital acceleration files on CD-Rom, Seismology Center, Central Weather Bureau, Taipei, Taiwan, Vol. 1.
Ma, K. F., C. T. Lee, Y. B. Tsai, T. C. Shin, and J. Mori, 1999. The Chi- Chi, Taiwan earthquake: large surface displacements on inland thrust fault, EOS, 80, 605-611.
Meng, C. Y., 1965. Lateral movement in the northern half of western Taiwan, Petro. Geol. Taiwan, 4, 89-92.
Miyabe, N., M. Hukunage, and M. Sato, 1938. Crustal deformations in central Taiwan, part. 2, Bull. Earthq. Res. Inst. Tokyo Univ., 16, 578-596.
Shin, T. C., 2000. Some seismological aspects of the 1999 Chi-Chi earthquake in Taiwan, TAO, 11, 555-566.
Spudich, P., and L. N. Frazer, 1984. Use of ray theory to calculate spatially variable rupture velocity and stress drop, Bull. Seism. Soc. Am., 74, 2061-2082.
Suppe, J., and J. Jasom, 1979. Fault-bend origin of frontal folds of the western Taiwan fold-and-thrust belt, Prtro. Geol. Taiwan, 16, 1-18.
Suppe, J., and M. Wittke, 1977. Abnormal fluid pressure in relation to stratigraphy and structure in the active fold-and-thrust belt of northwestern Taiwan, Petrol. Geol. Taiwan, 14, 11-24.
Suppe, J., 1980a. A retrodeformable cross section of northern Taiwan, Proc. Geol. Soc. China, 23, 46-55.
Suppe, J., 1980b. Imbricated Structure of Western Foothills Belt, south-central Taiwan, Petrol. Geol. Taiwan, 17, 1-16.
Tsai, Y. B. and M. W. Huang, 2000. Strong ground motion characteristics of the Chi-Chi, Taiwan earthquake of September 21, 1999, Earthquake Engineering and Engineering Seismology, 2, 1-21.
Tsai, Y. B., T. M. Yu, H. L. Chao, and C. P. Lee, 2001. Spatial distribution and age dependence of human-fatality rates from the Chi-Chi, Taiwan, Earthquake of 21 September 1999, Bull. Seism. Soc. Am., 91. 1298-1309.
Wald, D. J., V. Quitoriano, T. H. Heaton, and H. Kanamori, 1999. Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California, Earthquake Spectra, 15, 557-564.

Wang, C. Y., C. H. Chang, and H. Y. Yen, 2000. An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model, TAO, 11, 609-630.
Wu, Y. M., W. H. K. Lee, C. C. Chen, T. C. Shin, T. L. Teng, and Y. B. Tsai, 2000. Performance of the Taiwan rapid earthquake information release system (RTD) during the 1999 Chi-Chi (Taiwan) earthquake, Seism. Res. Lett., 71, 338-343.
Yu, S. B., L. C. Kuo, Y. J. Hsu, H. H. Su, C. C. Liu, C. S. Hou, J. F. Lee, T. C. Lai, C. C. Liu, C. L. Liu, T. F. Tseng, C. S. Tsai, and T. C. Shin, 2001. Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, Earthquake, Bull. Seism. Soc. Am., 91, 995-1012.
王乾盈,2000。集集地震之可能孕震構造,集集地震研究系列研討會(一),1-16。
王乾盈、洪智賢、陳璿臣,2001。以淺層反射震測剖面輔助地質鑽井,中國地質學會九十年年會論文摘要,96-98頁。
王乾盈、張建興、林祖慰,2000。集集大地震:薄皮逆衝理論之傑作?中國地質學會八十九年年會論文摘要,96-99頁。
王乾盈、顏宏元、周錦德、孫志財、張漢忠、李俊延、邱俊達、翁群評,2000。集集地震車籠埔斷層面測繪及其構造意義,中國地球物理學會八十九年年會論文摘要,78-91頁。
田永銘、陳建忠、莊德興,90年6月。集集大地震罹難者居住建築物特性調查及統計分析(I),30-139頁。
田永銘、陳建忠、莊德興,90年12月。集集大地震罹難者居住建築物特性調查及統計分析(II),24-152頁。
台灣台中地方法院檢察署,89年3月24初版。斷層上的烙痕,28-31頁。
行政院九二一震災災後重建推動委員會,2000。九二一集集大地震救災紀實(附1022嘉義大地震)上冊,1688頁。
沈嘉蕙、林正洪、王乾盈,2000。西北線型之地下構造,89年中國地質學會特刊,314-315頁。
李瓊武、余水倍,1985。精密三邊測量應用於地殼水平變形觀測之研究,第四屆測量學術及應用研討會,F1-F16。
李錦發、候進雄、費立沅、賴典章,2000。台灣中部地區地殼變形觀測之初步結果,集集地震研究系列研討會(二),74-80頁。

余水倍,1985。地殼變形與地震預測,一九三五年新竹-台中大地震五十周年紀念研討會論文集,156-177頁。
余貴坤、黃瑞德、張文彥,2001。嘉南地區淺部速度構造研究,九十年度地球物理學會研討會,40-45頁。
何春蓀,1997。台灣地質概論,經濟部中央地質調查所,共164頁。
林朝棨,1957。台灣地形,台灣省文獻委員會,共424頁。
林朝棨、周瑞敦,1974。台灣地質,台灣省文獻委員會,共450頁。
林慶偉,賴文基,黃敏郎,劉彥求,吳銘志,謝正倫,2000。九二一大地震成因與斷層活動機制,國立成功大學防災研究中心,國立成功大學地球科學系,1-5頁。
紀文榮、吳榮章、楊耿明、黃旭燦、徐祥宏、丁信修,1998。台灣西北部地區之構造分析與油氣聚積,中國石油公司探採研究所,87探採研究彙報第21期,54-55頁。
洪日豪,89年4月。由造山模式探討台灣西部麓山帶之構造,集集地震研究系列研討會(一),20-21頁。
黃柏壽,1989。以定元法模擬震源空間形貌與破裂過程博士論文,21-47及93-121頁。
畢慶昌,1969。府衝運動在台灣地體構成中的作用,台灣地質調查所彙刊,第20號,1-39頁。
畢慶昌,1972。西台灣斷層仍否衝動?國立台灣大學地質學系研究報告,第十五期,69-81頁。
陳文山,2002。車籠埔斷層的古地震事件與地質的意義,臺灣之活動斷層與地震災害研討會,83-88頁。
陳清泉,1985。古代與近代建築物對地震力作用之反應,一九三五年新竹-台中大地震五十周年紀念研討會論文集,178-182頁。
陳璿臣、邱俊達、王乾盈,2000。車籠埔斷層面細部震測影像,中國地球物理學會八十九年年會論文摘要,338-342頁。
張徽正、林啟文、陳勉銘、盧詩丁,1998。台灣活動斷層概論,經濟部中央地質調查所特刊,第十號。
新竹∼臺中烈震報告,昭和10年(1935年)。臺北觀測所,50-64頁。
溫國樑,1988。羅東地區之強地動特性。國立中央大學博士論文。
溫國樑、江賢仁、張芝苓、張道明,2002。臺灣地區之強地動觀測與地動特性,臺灣之活動斷層與地震災害研討會,10-21頁。
葉永田、蔡義本、溫國樑、蔡主權、徐碧霞,1985。中央研究院地球科學所強震觀測系統,一九三五年大地震紀念研討會論文集,137-155頁。
經濟部中央地質調查所,88年11月。九二一地震地質調查報告,1-9頁。
經濟部中央地質調查所,2000。九二一地震地質調查報告,共314頁。
廖士毅,2003。台灣震度之研究-以九二一集集地震序列為例,國立中央大學碩士論文,63-67頁。
謝昭輝、陳明宏,1999。地下岩層非均向性對地震波特性關係之物理模型研究,中國地球物理學會成果發表會論文集,141-146頁。
鍾大同,1992。獅潭地震斷層野外地質調查與淺層震測及微重力測勘之綜合研究,國立中央大學地球物理研究所碩士論文,74及96-100頁。
鍾開增,1996。苗栗地區麓山帶之地質構造,國立中央大學應用地質研究所碩士論文,1-3頁及8-18頁71-86頁及92-94頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 衣若芬<臺港蘇軾研究論著目錄一九四九~一九九九>《漢學研究通訊》總78期,2001年5月。
2. 廖美玉<古典詩的主題與技巧>《國文天地》18卷9期,2003年2月。
3. 林順夫<我思故我夢-試論晏幾道、蘇軾及吳文英詞裡的夢>《中外文學》第30卷第1期,2001年6月。
4. 王偉勇 <古典詞的主題與技巧─以唐宋詞為論述核心>《國文天地》18卷9期,2003年2月。
5. 陳滿銘 <唐宋詞拾玉(二九)─蘇軾的念奴嬌>《國文天地》17卷10期,2002年3月。
6. 朱榮智<中國傳統文人的三種生命情調--以屈原、陶淵明、蘇東坡為例>《國文天地》第16卷11期,2001年4月。
7. 陳滿銘<蘇東坡的境遇與詞風>《國文學報》第30期,2001年。
8. 高聖峰 <似花非花遷客淚─蘇軾「楊花詞」題旨索繹>《國文天地》第16卷7期,2000年12月。
9. 唐文德<蘇軾定風波詞中的生命情調與境界>《語文教育通訊》第20期,2000年6月。
10. 吳雅文 <從蘇軾的詞看其對詞體發展的貢獻>《中國語文月刊》493期,1998年7月。
11. 陳新雄<蘇軾寄託詞發微>上、下《中國書目季刊》第28卷4期、29卷1期,1995年3、6月。
12. 劉昭明 (從<賀新郎‧乳燕飛華屋>)詞論蘇軾在黃州時期之心境與寫作手法〉,《漢學研究》第12卷第1期,1994年6月。
13. 鄭向恆<東坡詞中的感情表現>《古典文學》2集,1980年12月。
 
系統版面圖檔 系統版面圖檔