(3.84.139.101) 您好!臺灣時間:2019/07/18 02:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:凡古源
研究生(外文):Nguyen Trong Van
論文名稱:海底地滑:台灣西南海域手掌海脊個案研究
論文名稱(外文):A Submarine Landslide Case Study from Palm Ridge, Offshore Southwestern Taiwan
指導教授:董家鈞董家鈞引用關係
指導教授(外文):Jia-Jyun Dong
學位類別:碩士
校院名稱:國立中央大學
系所名稱:應用地質研究所
學門:自然科學學門
學類:地球科學學類
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:81
中文關鍵詞:海底地滑邊坡穩定分析超額孔隙水壓地震天然氣水合物分解
外文關鍵詞:Submarine landslideslope stability analysisexcess pore water pressureearthquakesgas hydrate dissociation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
海底地滑不只是控制海底地形和傳輸沉積物至深水環境中,且對人類生命有巨大的影響。手掌海脊位於被動和活動大陸邊緣之間,根據過去研究,這裡曾發生海底事件,這事件與歷史事件中1781/1782年海嘯事件有高度相關。然而,海底地滑的發生仍未被充分研究。基於高解析度多波束測探系統、反射震測剖面和海底淺層數據,本研究旨在確定研究區域內是否存在古代海底地滑。若地滑確實存在,就能建立地滑的3D模型。此外,無限邊坡穩定分析來評估地震的可能大小和天然氣水合物分解產生的超額孔隙壓力的量。上述兩者被認為是最合理的滑坡觸發因子,透過常用的ArcGIS和Fledermaus技術來預測和繪製地滑範圍,然後通過地球物理探勘數據驗證確定的範圍。並使用Topo to Raster插值演算法重建事件前地形。初步成果顯示,研究區域內曾發生巨大的海底地滑,其長度約為22公里,寬6公里,覆蓋總面積為90.76平方公里。破壞面的最大深度沿代表剖面為296公尺,平均深度為162公尺。此海底地滑釋出並沉積大量沉積物,估計體積分別為4.02和4.9立方公里。無限邊坡穩定分析法表明,觸發滑坡破壞所需的超額孔隙壓力為1044 kPa,所需的尖峰地面加速度範圍為0.11至0.28 g。
關鍵字:海底地滑、邊坡穩定分析、超額孔隙水壓、地震、天然氣水合物分解.
Submarine landslides do not only regulate the shape of the seafloor and transport sediment into the deep-water environment, but also have a significant influence on human life. Palm Ridge is an area located between passive and active continental margin. According to previous studies, there could be a submarine event occurred in this area. That event also considered highly related to the 1781/1782 tsunami event described in the historical records. However, the occurrence of that submarine landslide is still not well-studied. Based on the high-resolution multi-beam bathymetric, reflection seismic profiles and sub-bottom data, this study aims to confirm that whether there is an ancient submarine landslide in the study area or not. If the landslide does exist, then the 3D model for the proposed landslide will be built. In addition, an infinite slope stability analysis method will be applied to evaluate the possible magnitude of an earthquake and the amount of excess pore pressure resulting from gas-hydrate dissociation. They are considered as the most plausible landslide triggering factors. Utilizing the common use of ArcGIS and Fledermaus techniques, the range of landslide is predicted and mapped and then the identified range is validated by the geophysical prospecting data. The pre-event topography is also reconstructed by using Topo to Raster interpolation algorithm. The preliminary result shows that there is a huge submarine landslide occurred in the study area with the dimension of roughly 22 km length, 6 km wide and covering a total area of 90.76 km2. The maximum depth of the failure surface along the representative cross section is about 296 m and the average depth is 162 m. This submarine landslide released and deposited a huge amount of sediment with an estimated volume of 4.02 and 4.9 km3, respectively. The infinite slope analysis indicated that the required amount of excess pore pressure to trigger the failure of slope is 1044 kPa. And the required Peak Ground Acceleration ranges from 0.11 to 0.28g.
ABSTRACT i
ACKNOWLEDGMENT iv
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xi
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: METHODOLOGY 9
2.1. Research Data 10
2.2. Pre-event Topography Reconstruction 13
2.2.1. Geomorphology Analysis and Validation 14
2.2.2. Automatically Pre-event DEM Generation 15
2.2.3. Manually Adjustment of the Automatic Created DEM 16
2.2.4. Volume Balance 16
2.3. Back Analysis of Triggering Factors 17
2.3.1. Infinite and Finite Slope Stability Analysis 18
2.3.2. Back Analysis Input Parameters 20
2.3.3. Back Analysis of the Excess Pore Water Pressure 21
2.3.4. Back Analysis of the Peak Ground Acceleration 22
2.3.5. Correlation between Excess Pore Pressure and Horizontal Seismic Coefficient 23
2.4. Identification of Possible Earthquake Sources 24
CHAPTER 3: PRE-EVENT TOPOGRAPHY RECONSTRUCTION 26
3.1. Geomorphology Analysis and Validation 26
3.2. Automatically Pre-event DEM Generation 36
3.3. Manually Adjustment of the Automatic Created DEM 38
CHAPTER 4: BACK ANALYSIS OF TRIGGERING FACTORS 45
4.1. Sensitivity of effective cohesion force. 45
4.2. Comparison between Infinite and Finite Slope Stability. 46
4.3. Back Analysis of Excess Pore Water Pressure 46
4.4. Back analysis of Peak Ground Acceleration 48
4.5. Correlation between Excess Pore Pressure and Horizontal Seismic Coefficient 49
CHAPTER 5: DISCUSION ON SLOPE STABIITY OF OFF SOUTHWEST TAIWAN 50
5.1. Identification of Possible Earth Sources 50
5.2. Submarine Landslide Susceptibility of the Neighboring Areas 56
CONCLUSIONS 58
REFERENCES 59
APPENDIXES 65
[1] Ameratunga, J., Sivakugan, N., and Das, B. M., Correlations of soil and rock properties in geotechnical engineering, Springer India Publ., New Delhi, 2016.
[2] R. Bergonse and V. E. Reis, “Reconstructing pre-erosion topography using spatial interpolation techniques: A validation-based approach”, Journal of Geographical Sciences, Vol 25, pp. 196-210, 2015.
[3] C. H. Chang, “Mud diapir investigation offshore southwestern Taiwan”, Natl. Taiwan Univ., Master Thesis, 1993 (in Chinese).
[4] K. J. Chang, A. Taboada, Y. C. Chan, S. Dominguez, “Post-seismic surface processes in the Jiufengershan landslide area, 1999 Chi-Chi earthquake epicentral zone Taiwan”, Engineering Geology, Vol 86, pp. 102–117, 2006.
[5] R. F. Chen, K. J. Chang, J. Angelier, Y. C. Chan, B. Deffontaines, C. T. Lee, M. L. Lin, “Topographical changes revealed by high-resolution airborne LiDAR data: the 1999 Tsaoling landslide induced by the Chi-Chi earthquake”, Engineering Geology, Vol 88, pp. 160–172, 2006.
[6] W. C. Chi, D. L. Reed, C. C. Tsai, “Gas hydrate stability zone in offshore southern Taiwan”, Terr. Atmos. Ocean. Sci., Vol 17, pp. 829-843, 2006.
[7] W. C. Chi, D. L. Reed, C. S. Liu, and N. Lundberg, “Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone”, Terr. Atmos. Ocean. Sci., Vol 9, pp. 779-794, 1998.
[8] D. M. Cruden, D. J. Varnes, “Landslide Types and Processes, Transportation Research Board, U.S. National Academy of Sciences”, Special Report, Vol 247, pp. 36-75, 1996.
[9] R. V. Dingle, “The anatomy of a large submarine slump on a sheared continental margin (southeast Africa)”, Jour. Geol. Soc. London, Vol 134, pp. 293-310, 1977.
[10] M. J. R. Gee, R. L, Gawthorep, J. S, Friedmann, “Giant striations at the base of a submarine landslide”, Marine Geology, Vol 214, pp. 287-294, 2005.
[11] M. A. Hampton, H. J. Lee, J. Locat, “Submarine landslides”, Review of geophysics, Vol 34, pp. 33-59, 1996.
[12] J. J. Hance, “Submarine Slope Stability”, The University of Texas, Master thesis, 2003.
[13] H. H. Hsu, J. J. Dong, S. K. Hsu, C. C. Su, “Back analysis of an earthquake-triggered submarine landslide near the SW of Xiaoliuqiu”, Terr. Atmos. Ocean. Sci., Vol 29, pp. 77-85, 2018.
[14] S. K. Hsu, J. Kuo, C. L. Lo, C. H. Tsai, D. B. Doo, C. Y. Ku, J. C. Sinuet, “Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquakes off SW Taiwan”, Terr. Atmos. Ocean. Sci., Vol 19, pp. 767-772, 2008.
[15] S. K. Hsu, S. S. Lin, S. Y. Wang, C. H. Tsai, W. B. Doo, S. C. Chen, J. Y. Lin, Y. C. Yeh, H. F. Wang, and C. W. Su, “Seabed gas
emissions and submarine landslides off SW Taiwan”, Terr. Atmos.
Ocean. Sci., Vol 29, pp. 7-15, 2018.
[16] I. L. Huang, “Structural analyses offshore southwestern Taiwan”, Natl. Taiwan Univ., Master Thesis, 1993. (in Chinese).
[17] O. Hungr, S. G. Evans, “Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism”, Geological Society of America Bulletin, Vol 116, pp. 1240–1252, 2004.
[18] M. Hussain, T. D. Stark, K. Akhtar, “Back-analysis procedure for landslides”, International Conference on Geotechnical Engineering, pp. 159-166, Lahore City, Pakistan, November 2010.
[19] R. D. Hyndman, J. P. Foucher, M. Y. Yamano, and A. Fisher, “Deep sea bottom-simulating reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates”, Earth Planet. Sci. Lett., Vol 109, pp. 289-301, 1992.
[20] M. E. Hynes and A. G. Franklin, “Rationalizing the Seismic Coefficient Method”, Miscellaneous Paper GL-84-13, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, 1984.
[21] K. A. Kvenvolden, “Gas hydrates-geological perspective and global change”, Review of Geophysics, Vol 31, pp. 173-187, 1993.
[22] K. A. Kvenvolden and T. D. Lorenson, “The global occurrence of natural gas hydrates”, Geophysiscal Monograph, Vol 124, pp. 3-18, 2011.
[23] C. C. Ladd, “Stability Evaluation during Staged Construction”, Journal of Geotechnical Engineering, Vol 117, pp. 540-615, 1991.
[24] S. Lallemand, R. Lehu, F. Rétif, S. K. Hsu, N. Babonneau, G. Ratzov, M. A. Bassetti, L. Dezileau, M. L. Hsieh, S. Dominguez, “A ~3000 years-old sequence of extreme events revealed by marine and shore deposits east of Taiwan”, Tectonophysics, Vol 692, pp. 325-341, 2015.
[25] Lambe, T. W., and Whitman R. V., Soil Mechanics., John Wiley & Sons, Inc., New York, 1969.
[26] C. T. Lee, Cheng, C. T., Liao, C. W., and Tsai, Y. B., “Site classifications of Taiwan free-field strong-motion stations”, Bull. Seism. Soc. Am., Vol 91, pp.1283-1297, 2001.
[27] L. Li, A. D. Switzer, Y. Wang, R. Weiss, Q. Qiu, C. H. Cahn, P. Tapponnier, “What caused the mysterious eighteenth-century tsunami that struck the southwest Taiwan coast?” Geophysical Research Letter, Vol 42, pp. 8498-8506, 2015.
[28] W. Z. Liao, A. T. Lin, C. S. Liu, J. N. Oung, Y. Wang, “A Study on Tectonic and Sedimentary Development in the Rifted Northern Continental Margin of the South China Sea near Taiwan”, Interpretation, Vol 4, pp. 47-65, 2016.
[29] A. T. Lin, B. Yao, S. K. Hsu, C. S. Liu, C. Y. Huang, “Tectonic Features of the Incipient Arc-Continent Collision Zone of Taiwan: Implications for Seismicity”, Tectonophysics, Vol 479, pp. 28-42, 2009.
[30] C. C. Lin, A. T. Lin, C. S. Liu, C. S. Horng, G. Y. Chen, Y. Wang, “Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan”, Marine Geophysical Research, Vol 35, pp. 21-35, 2013.
[31] J. Y. Lin, S. K. Hsu, H. H. Hsu, C. C. Su, J. J. Dong, Y. C. Yeh, W. B. Cheng, “Marine geology and seabed stability study for the potential gas-hydrate area off SW Taiwan (3/3)”, Ministry of Science and Technology, Project Report, 2018 (in Chinese).
[32] P. S. Lin, Lee, C. T., Cheng, C. T., C. H. Sung, “Response spectral attenuation relations for shallow crustal earthquakes in Taiwan”, Engineering Geology, Vol 121, pp. 150-164, 2011.
[33] P. S. Lin and C. T. Lee, “Ground-Motion Attenuation Relationships for Subduction-Zone Earthquakes in Northeastern Taiwan”, Bulletin of the Seismological Society of America, Vol 98, pp. 220-240, 2008.
[34] C. S. Liu, B. Defforntaines, C. U. Lu, S. Lallemand, “Deformation Patterns of an Accretionary Wedge in the Transition Zone from Subduction to Collision Offshore Southwestern Taiwan”, Marine Geophysical Researches, Vol 25, pp. 123-137, 2004.
[35] C. S. Liu, P. Schnurle, Y. Wang, S. H. Chung, S. C. Chen, T. H. Hsiuan, “Distribution and Characters of Gas Hydrate Offshore Southwestern Taiwan”, Terr. Atmos. Ocean, Vol 17, pp. 615-644, 2006.
[36] B. G. McAdoo, L. F. Pratson, D. L. Orange, “Submarine Landslide Geomorphology, US Continental Slope”, Marine Geology, Vol 169, pp. 103–136, 2000.
[37] R. D. McIver, “Role of Naturally Occurring Gas Hydrates in Sediment Transport”, AAPG Bull., Vol 66, pp. 789-792, 1982.
[38] D. Reed, N. Lundberg, C. S. Liu, and K. D. McIntosh, “Evidence of frontal thrust propagation and fluid migration in an off scraped sedimentary basin sequence offshore Taiwan”, TAICRUST Workshop Proceedings, pp. 103-106, Taipei, Taiwan, 1991.
[39] Repetti W. C., Catalogue of Philippine earthquakes, 1589-1899, University of California Press, California, 1946.
[40] R. L. Schuster, L. M. Highland, “Impact of landslides and innovative landslide mitigation measures on the natural environment”, Proc. of Int. Conf. on slope engineering, pp. 50-95, University of Hong Kong, Hong Kong, 2003.
[41] T. H. Shipley, M. H. Houston, R. T. Buffler, F. J. Shaub, K. J. McMillen, J. W. Ladd, and J. L. Worzel, “Seismic reflection evidence for widespread occurrence of possible gas-hydrate horizons on continental slopes and rises”, AAPG Bull., Vol 63, pp. 2204-2213, 1979.
[42] R. D. Stoll, J. I. Ewing, and G. M. Bryan, “Anomalous velocities in sediments containing gas hydrate”, J. Geophys. Res., Vol 76, pp. 2090-2094, 1971.
[43] B. W. Tichelaar and L. J. Ruff, “Depth of seismic coupling along subduction zones”, J. Geophys. Res., Vol 98, pp. 2017-2037, 1993.
[44] B. F. Tucholke, G. M. Bryan, and J. I. Ewing, “Gas-hydrate horizons detected in seismic-profiler data from the western North Atlantic”, AAPG Bull., Vol 61, pp. 698-707, 1977.
[45] L. Wan, X. Yu, T. Steve, S. Li, Z. Kuang, Z. Sha, J. Liang, Y. He, “Submarine Landslides, Relationship with BSRs in the Dongsha Area of South China Sea”, Petroleum Research, Vol 1, pp. 59-69, 2016.
[46] C. Y. Wu, “The Distribution of Submarine and Characteristics Landslides Offshore Southern Taiwan”, Natl. Taiwan Univ., Master thesis, 2008 (in Chinese).
[47] W. Xu, L. N. Germanovich, “Excess Pore Pressure Resulting from Methane Hydrate Dissociation in Marine Sediments: A Theoretical Approach”, Journal of Geophysical Research, Vol 111, BO1104, 2006.
[48] R. R. Youngs and S. J. Chiou, “Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes”, Seismological Research Letters, Vol 68, pp. 58-73, 1997.
[49] H. S. Yu and J. F. Chang, “The Penghu Submarine Canyon Off Southwestern Taiwan Morphology and Origin”, TAO, Vol 13, pp. 547-562, 2002.
[50] H. Zhang, X. Luo, J. Bi, G. He, Z. Guo, “Submarine Slope Stability Analysis during Natural Gas Hydrate Dissociation”, Marine Geology & Geotechnology, DOI: 10.1080/1064119X.2018.1452997, 2018.
[51] H. Kao, F. T. Wu, “The 16 September 1994 Earthquake (Mb = 6.5) in the Taiwan Straint and Its Tectonics Implications”, TAO, Vol 7, pp. 13-29, 1996.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔