跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/24 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:卜安怡
研究生(外文):An-yi Bu
論文名稱(外文):Conformality of Planar Parameterization for Single Boundary Triangulated Surface Mesh
指導教授:陳建隆陳建隆引用關係
指導教授(外文):Jann-long Chern
學位類別:碩士
校院名稱:國立中央大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:53
中文關鍵詞:保角性平面參數化單一邊界網格黎曼映射
外文關鍵詞:conformalityplanar parameterizationsingle boundary meshriemann mapping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
曲面參數化是將曲面映射至一個平面:給定任兩個拓樸等價的曲面,我們可以在這兩個曲面之間,找到一對一且映成的對應關係。如果將曲面以三角網格離散化,則計算此兩曲面間對應關係的問題稱為網格參數化 (mesh parameterization),曲面所對應的二維平面被稱作參數值域 (parameter domain)。參數化的方法可分為固定邊界 (fixed boundary) 及自由邊界 (free boundary) 兩種,而此兩種方法都可再細分為線性與非線性方法。一般來說,固定邊界源自於物理中的彈簧模型:給定一個二維平面上的區域,將三維曲面的邊界固定在指定區域的邊界上,接著將曲面內部的邊視為彈簧,透過不同彈力係數的選取,可得到不同參數化結果。此篇論文計算了以下六種不同的 weight:Uniform weight, Chord Length weight, Wachspress weight, Harmonic weight, Mean Value weight, Semi-Cotangent weight。而非線性的部分,我們實作了理論上保角的 Riemann Mapping。自由邊界主要採用最小化目標函數 (objective function) 的能量,目前常見的方法有:Least Square Confomral Maps (LSCM) 以及 Linear Angle-Based Flattening (LABF)。在這篇論文中,我們對單一邊界的網格作不同的參數化,並比較各種不同方法的保角性。由於好的參數化是希望最小化角度形變量 (angle distortion),也就是做到保角的參數化 (conformal parameterization )。在我們的實驗數據中,Riemann Mapping 的保角性及效能是相當好的,對面數在30至90K的模型大都能在1分鐘內作完,除驗證保角性與理論相符,也應證了保角性與網格間的關係。
Surface parameterization is the process of mapping a surface to a planar region. Given any two surfaces with similar topology, it is possible to compute a one-to-one and onto mapping between them. If one of these surfaces is represented by a triangular mesh, the problem of computing such a mapping is referred to as mesh parameterization. The surface that the mesh is mapped to is typically referred to as the parameter domain. The parameterization methods can be roughly classified into fixed boundary methods and free boundary methods. In general, fixed boundary methods are based on the spring model. According to the different choice of weight, results may vary from method to method. In this paper, we parameterize the single boundary meshes with six linear methods by choosing different weight and the non-linear Riemann mapping method. Then we compare the conformality of different methods. Theoretically, the Riemann mapping is an angle-preserving method. On the other hand, the free boundary methods is always consid- ered to minimize energy of the objective function. In our numerical results, Riemann mapping method reaches high efficiency and good conformality. For larger models with 90,000 number of areas, parameterization can be finished within one minute. When several methods address the same parameterization problem, this paper strives to provide an objective comparison between them based on criteria such as parameterization quality, efficiency and robustness.
Tables ix
Figures xi

1 Introduction 1
1.1 Background 1
1.2 Overview 3

2 Fixed Boundary Methods 4
2.1 The Barycentric Mappings 5
2.2 Riemann mapping 6

3 Free Boundary Methods 7
3.1 Least Square Conformal Maps Method 7
3.2 Linear Angle-based Flattening Method 9

4 Measurements of Conformality 11
4.1 Conformality 12
4.2 L2 shear 14
4.3 Squared Sum of Angle Differences 15

5 Numerical Results 15
5.1 Mesh Preparation 15
5.2 Discussion 38

6 Conclusions 39

[1] P. Alliez, M.Meyer, and M. Desbrun. Interactive geometry remeshing. Comput. Graphics (Proc. SIGGRAPH 02), pages 347–354, 2002.
[2] S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. Conformal geometry and brain flattening. Proc. MICCAI, pages 271–278, 1999.
[3] X. David and S.-T. Tau. Computational Conformal Geometry. International Press of Boston, 2008.
[4] M. Desbrun, M.Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes. Com- puter Graphics Forum, Proc. Eurographics’02, (3):209–218, 2002.
[5] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolu- tion analysis of arbitrary meshes. Proc. ACM SIGGRAPH ’95, pages 173–182, 1995.
[6] M.-S. Floaster. Parameterization and smooth approximation of surface triangulations. Computer Aided Geometric Design, pages 231–250, 1997.
[7] M.-S. Floater. Mean value coordinates. COMPUTER AIDED GEOMETRIC DESIGN, 2002.
[8] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau. Genus zero surface con- formal mapping and its application to brain surface mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING, (8), 2004.
[9] X. Gu and S.-T. Yau. Computing conformal structure of surfaces. Communication of Informtion and Systems, 2002.
[10] X. Gu and S.-T Yau. Multiresolution analysis of arbitrary meshes. Communication of Informtion and Systems, 2002.
[11] X. Gu and S.-T. Yau. Global conformal surface parameterization. Proc. ACM Symp. Geometry Processing, pages 127–137, 2003.
[12] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Conformal surface parameterization for texture mapping. IEEE Trans. Visual. Comput. Graphics, pages 181–189, 2000.
[13] K. Hormann and G. Greiner. Mips: An efficient global parameterization method. Curve and Surface Design: Saint-Malo, 1999.
[14] M. Hurdal, P. Bowers, K. Stephenson, D. Sumners, K. Rehm, K. Schaper, and D. Rotten- berg. Quasiconformally flat mapping the human cerebellum. Proc. MICCAI’99, 1999.
[15] M.Hurdal,K.Stephenson,P.Bowers,D.Sumners,andD.Rottenberg.Coordinatesystems for conformal cerebellar flat maps. NeuroImage, 2000.
[16] T. Kanai, H. Suzuki, and F. Kimura. Three-dimensional geometric metamorphosis based on harmonic maps. Visual Comput, (4):166–176, 1998.
40
[17] B. Le ́vy, S. Petitjen, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas generation. Proc. ACM SIGGRAPH ’02, pages 362–371, 2002.
[18] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Exp. Math., (1):15–36, 1993.
[19] P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe. Texture mapping progressive meshes. Proc. ACM SIGGRAPH ’01, pages 409–416, 2001.
[20] R. Schoen and S.-T. Yau. Lectures on harmonic maps. Cambridge, MA: Harvard Univ., Int. Press, 1997.
[21] A. Sheffer and E. de Sturler. Parameterization of faceted surfaces for meshing using angle based flattening. Eng. Computers, (3):326–337, 2001.
[22] A. Sheffer, B. Le ́vy, M. Mogilnitsky, and A. Bogomyakov. ABF++: Fast and robust angle based flattening. ACM Trans. Graphics, (2):311–330, 2005.
[23] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their applications. Proc. ACM SIGGRAPH ’01, pages 179–184, 2001.
[24] W.-T. Tutte. How to draw a graph. London Mathematical Society, pages 743–768, 1963.
[25] E.-L. Wachspress. A rational finited element basis. Academic Press, New York, 1975.
[26] M.-Q. Wei, M.-Y. Pang, and C.-L. Fan. Survey on planar parameterization of triangular meshes. International Conference on Measuring Technology and Mechatronics Automa- tion, 2010.
[27] R. Zayer, B. Le ́vy, and H.-P. Seidel. Linear angle based parameterization. Proc. Fifth Eurographics Symp. Geometry Processing (SGP ’07), pages 349–360, 2007.
[28] R. Zayer, C. Ro ̈ssl, and H.-P. Seidel. Variations of angle based flattening. Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages 187–199, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top