(52.87.176.39) 您好!臺灣時間:2019/06/26 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:古貝華
研究生(外文):Dana Mutiara Kusumawardani
論文名稱:探討透水瀝青混凝土添加爐石的成效及溫感性能之研究
論文名稱(外文):Evaluations of Performance and Thermal Properties in Porous Asphalt Concrete Containing Steel Slag
指導教授:林志棟林志棟引用關係蘇育民蘇育民引用關係
指導教授(外文):Jyh-Dong LinYu-Min Su
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:88
中文關鍵詞:多孔隙瀝青混凝土爐石成效試驗熱學性質
外文關鍵詞:Porous Asphalt Concrete (PAC)steel slagmixtures performancethermal properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
多孔隙瀝青混凝土(Porous Asphalt Concrete, or PAC)具有高孔隙排水性,其優點包括環保、雨天車輛抗滑、利於排水、減少光反射、降低鋪面行車噪音等。本研究主要探討多孔隙瀝青混凝土添加兩種不同製程之爐石材料,在三種不同取代粗粒料的比例下,對鋪面成效及熱學性質造成的影響。兩種爐石包括轉爐石及滾筒碴,取代粗粒料比例為0%、30%及50%。成效試驗包含回彈模數、車轍試驗、抗滑試驗、及水份侵害試驗;混合料的熱學性質則評估熱傳遞、熱容量、以及熱傳導係數等性質。試驗結果顯示,兩種爐石材料較一般傳統粒料皆有較高的比重及吸水率,但健性及粒料磨損率則相對較低;從混合料各項試驗結果與統計分析可以發現,轉爐石取代粗粒料30%的多孔隙瀝青混凝土,在本研究中具有最佳的成效表現,熱傳導及熱擴散係數的結果亦為所有試驗組中的最高值。本研究結果認為轉爐石及滾筒碴皆能夠做為在設計多孔隙瀝青混凝土中取代粗粒料之材料
Porous asphalt concrete (PAC) is one alternative solution to the problem of stormwater drainage from parking and other low traffic density areas. The overall benefits of porous asphalt concrete may include both environmental and safety benefits including improved stormwater management, improved skid resistance, reduction of spray to drivers and pedestrians, reduction in light reflection and headlight glare, as well as a potential for noise reduction. However, there are disadvantages of this pavement type such as has lower service life than dense mixes. Steel slag is the material generated from purifying metal, their casting and alloying. It is steel slag that can be used as an aggregate substitution. The objective of this study was to evaluate the performance and thermal properties of porous asphalt concrete containing steel slag.
Two types of steel slag were used to subtitute coarse aggregate, including Basic Oxygen Furnace (BOF) and Baoshan Slag Short Flow (BSSF). Three different percentages of steel slag, namely 0%, 30%, and 50%, were mixed. Two main aspects are investigated in this study. One is mixture performance, including resilient modulus, rutting potential, skid resistance, and moisture susceptibility test. The other is thermal properties characteristic, including thermal conductivity, thermal heat capacity, and thermal diffusivity. Statistical were utilized to determine which treatment has the best performance result.
The test results show that steel slag has higher specific gravity, high absorption, but lower L.A. abrasion, and soundness compared with natural aggregate. PAC containing steel slag may enhance the resilient modulus, skid resistance, rutting potential, and moisture susceptibility. However the application of high percentage of steel slag may decrease the performance of PAC, such as decrease skid resistance, rutting potential, and moisture susceptibility. The statistical analysis results show that PAC containing 30% of BOF slag has the best performance results, however this kind of pavement had the highest thermal conductivity and thermal diffusivity compared with others. The conclusions indicate that both BOF and BSSF slag are suitable to used as coarse aggregate substitution in PAC.

ABSTRACT ................................................................................................................ i
CHINESE ABSTRACT……………………………….................................……...... ii
ACKNOWLEDGEMENTS ......................................................................................... iii
TABLE OF CONTENTS ............................................................................................. iv
List of Figure ............................................................................................................... vii
List of Table ................................................................................................................. ix
CHAPTER 1
INTRODUCTION
1.1 Research Background ............................................................................................. 1
1.2 Research Objectives ................................................................................................ 2
1.3 Research Hypothesis ............................................................................................... 3
1.4 Research Scope ....................................................................................................... 3
1.5 Research Flowchart ................................................................................................. 4
CHAPTER 2
LITERATURE REVIEW
2.1. Porous Asphalt Concrete....................................................................................... 5
2.1.1. Materials Requirements
2.1.1.1. Aggregates .............................................................................. 6
2.1.1.2. Asphalt ................................................................................... 8
2.1.2. Benefits of Porous Asphalt
2.1.2.1. Safety ......................................................................................8
2.1.2.2. Comfortability ......................................................................... 9
2.1.2.3. Enviromental Benefits .............................................................10
2.2. Steel Slag
2.2.1. Slag’s Production .................................................................................. 11
2.2.2. Type of Steel Slag .................................................................................. 11
2.2.3. Baosteel Slag Short Flow ........................................................................ 15
2.2.4. Material Properties of Steel Slag
2.2.4.1. Physical Properties ....................................................................... 17
2.2.4.2. Chemical Properties and Mineralogical Composition.............. 17
2.2.4.3. Mechanical Properties .................................................................. 18
2.2.5. Benefits of Using Steel Slag in Road Construction ............................... 19
2.2.6. Problem associated with Steel Slag aggregates ..................................... 20
2.2.7. Application of steel slag
2.2.7.1. Current uses of steel slag ............................................................... 21
2.2.7.2. Application of steel slag in road construction ............................... 22
2.3. Thermal Properties
2.3.1. Thermal Properties of Asphalt Mixtures ................................................ 24
2.3.1.1. Thermal Conductivity (k) ........................................................ 26
2.3.1.2. Volumetric Heat Capacity (C) ................................................. 27
2.3.1.3. Thermal Diffusivity ................................................................. 27
2.3.2. Overview of Thermal Properties Test Result for Asphalt Mixtures........ 28
2.3.3. Relationship between thermal properties of pavement with Urban Head Islands .................................................................................................... 29
CHAPTER 3
EXPERIMENTAL PLAN
3.1. Selection of Materials ........................................................................................... 32
3.1.1. Steel Slag ............................................................................................... 32
3.1.2. Natural Aggregates and Asphalt Binder ................................................ 32
3.2. Testing Program ................................................................................................... 32
3.2.1. Performance tests of PAC ...................................................................... 33
3.2.1.1. Resilient Modulus Test ............................................................ 33
3.2.1.2. Indirect Tensile Strength ......................................................... 35
3.2.1.3. Rutting Potential Test ............................................................. 36
3.2.1.4. Skid Resistance Test ............................................................... 37
3.2.1.5. Moisture Susceptibility Test ................................................... 38
3.2.2. Thermal Properties Test ........................................................................ 39
3.3. Statistical Analysis
3.3.1. Analysis of Variace (ANOVA) .............................................................. 39
3.3.2. Duncan’s Multiple Range Test ............................................................... 40
CHAPTER 4
TEST RESULTS
4.1. Materials Characterization
4.1.1. Chemichal Composition and Physical Properties of steel slag ............... 42
4.1.2. Physical Properties of Asphalt Binders .................................................. 44
4.1.3. Aggregate Sieve Analysis ....................................................................... 45
4.2. Mix Design of PAC
4.2.1. Mix design of PAC without steel slag .................................................... 46
4.2.2. Mix design of PAC containing BOF slag ............................................... 47
4.2.3. Mix design of PAC containing BSSF slag ............................................. 48
4.2.4. Mix design test results ............................................................................ 50
4.3. Mixture Performance
4.3.1. Resilient Modulus ................................................................................... 51
4.3.2. Rutting Potential Test ............................................................................ 53
4.3.3. Skid Resistance Test .............................................................................. 53
4.3.4. Moisture Susceptibility Test .................................................................. 54
4.4. Thermal Properties ................................................................................................. 56
4.5. Analysis of Variance (ANOVA) ........................................................................... 59
CHAPTER 5
DISCUSSION AND ANALYSIS
5.1. Performance of PAC containing steel slag
5.1.1. Resilient Modulus ................................................................................... 61
5.1.2. Rutting Potential ..................................................................................... 63
5.1.3. Skid Resistance ....................................................................................... 66
5.1.4. Moisture Susceptibility ........................................................................... 68
5.1.5. Statistical Analysis .................................................................................. 70
5.2. Thermal Properties of PAC .................................................................................... 72
CHAPTER 6
CONCLUSIONS
6.1. Conclusions ............................................................................................................ 75
6.2. Recommendations .................................................................................................. 76
REFERENCES ............................................................................................................ 77

Asphalt Institute. (2003). SP-1 Superpave Performance Graded Asphalt Binder Specifications and Testing. Lexington, KY.
Barišić, S . Dimter, I . Netinger. (2010). Possibilities of Application of Slag in Road Construction. Technical Gazette 17, 4, pp. 523-528
Haritonovs, V.,Zaumanis, M., Brencis, G., and Smirnovs, J. (2013). Asphalt Concrete Performance with Conventional and Waste Aggregates. International Journal of Pavement Research and Technology, 6(5), pp. 505-510.
Huang, Y., Bird, R.N., and Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements, Resources, Conservation and Recycling, 52(1), pp. 58–73.
Huang, L.S. and Lin, D.F. (2011). Influence of Cooling Efficiency of Basic Oxygen Furnace Slag Used in Recycled Asphalt Concrete, International Journal of Pavement Research and Technology, 4(6), pp. 347-355.
Huang, L.S., Zou, G.L., Luo, H.L., and Chao, C.C. (2013). In-situ Temperature Effects in Basic Oxygen Furnace Slag Asphalt Concrete Pavement. International Journal of Pavement Research and Technology, 6(4):386-394
Hsu, C.Y., Chen, S.H., Lin, J.D., and Su, Y.M. THE IN-SITU TEMPERATURE EVALUATIONS OF PERMEABLE PAVEMENTS IN SUMMER
Kehagia, F. (2009). Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates. Waste Management and Research, 27, pp. 288-294.
Lewis D. W. (1982). Properties and Uses of Iron and Steel Slag. National Slag Association Presented at Symposium on Slag National Institute for Transport and Road Research South Africa, February, 1982
Li Guangqiang, Ni Hongwei. (2011). Recent progress of hot stage processing for steelmaking slags in China considering stability and heat recovery. 2nd International Slag Valorisation Symposium – Leuven. pp. 18-20.
Mamlouk, M.S, Witczak, M.W., Kaloush, K.E., and Hasa, N. (2005) Determination of Thermal Properties of Asphalt Mixture. Journal of Testing and Evaluation,33(2).
Minnesota Department of Transportation. (2009). Hot mixed asphalt – porous pavement. http://www.dot.state.mn.us/materials/bituminousdocs/Special_Provisions/2009/Porous%20Pavement/Porous_PVMT.pdf. (Accessed October 15th, 2013)
Motz, H., Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21, pp. 285-293.
National Asphal Pavement Association. Structural Design of Porous Asphalt. Available at http://www.asphaltpavement.org/index.php?option=com_content&;view=article&;id=511&;Itemid=1109 (Accesed on November 15, 2013)
Ongel A., Harvey, J., and Kohler, E. (2007). State of the Practice in 2006 for Open--Graded Asphalt Mix Design. Technical Memorandum: UCPRC-TM-2008-07
Pavement Interactive (2010), Porous Pavements – Groundwater’s Best Friend, available at http://www.pavementinteractive.org/2010/10/06/7038/ (Accessed on November 13th, 2013)
Shen, D.H., Wu, C.M., and Du, J.C. (2009). Laboratory Investigation of Basic Oxygen Furnace Slag for Substitution of Aggregate in Porous Asphalt Mixture, Construction and Building Materials, 23(1), pp. 453-461.
Suresha, S.N., Varghese, G., Ravi Shankar, A.U. (2009). A comparative study on properties of porous friction course mixes with neat bitumen and modified binders. Construction and Building Materials, 23, pp. 1211-1217.
Tan, S. and Fwa, T.F, (1992). Influence of pavement materials on the thermal environment of outdoor spaces. Building and Environment, Vol. 27, No. 3, pp. 289-295
UNHSC. (2009). UNHSC Design Specifications for Porous Asphalt Pavement and Infiltration Beds, University of New Hampshire Stormwater Center.
Wang, G., Wang, Y. and Gao, Z. (2010). Use of steel slag as a granular material: Volume expansion prediction and usability criteria, Journal of Hazardous Materials,184, pp. 555-560.
Wu, S., Xue, Y., Ye, Q. and Chen, Y. (2007). Utilization of Steel Slag as Aggregates for Stone Mastic Asphalt (SMA) Mixtures, Building and Environment, 42(7), pp. 2580-2585.
Xiao Yongli, Li Yongqian and Liu Yin. 2009. Research and Applications of Baosteel’S BSSF Process for Molten Steelmaking Slag Treatment.
Xue, Y., Wu, S., Hou, H. and Zha, J. (2006). Experimental Investigation of Basic Oxygen Furnace Slag Used as Aggregate in Asphalt Mixture, Journal of Hazardous Materials, 138(2), pp. 261-268.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔