(3.235.137.159) 您好!臺灣時間:2020/09/29 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:呂其孟
研究生(外文):Chi-Meng Lu
論文名稱:以非週期性晶疇極化反轉鈮酸鋰達成連續式或主動式Q-調制雙波長Nd:YVO4雷射電光選頻之研究
論文名稱(外文):Electro-optically laser line switchable in a dual-wavelength cw/Q-switched Nd:YVO4 laser based on aperiodically poled lithium niobate
指導教授:陳彥宏陳彥宏引用關係
指導教授(外文):Yen-Hung Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:132
中文關鍵詞:波長選頻非週期性晶疇極化反轉鈮酸鋰晶體非線性光學Q調制
外文關鍵詞:Wavelength selectionaperiodically poled lithium niobatenonlinear opticsQ-switchelectro opticNd:YVO4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用模擬退火法設計出藉由施加單段電光調制而得到1064.5nm & 1342.33nm雙波長的選頻,有別於其他使用機械式的波長與波長之間選頻的切換本實驗利用電光調制系統快速的切換波長選擇輸出,切換的時間遠遠小於它們,

本論文還利用單段電光分別主動式Q調制1064.5nm & 1342.33nm雙波長進而得到非相位匹配(non-phase matching)的綠光脈衝雷射與紅光脈衝雷射,還可以利用雙波長同時Q調制來達到和頻的作用進而輸出非相位匹配(non-phase matching)593nm的橘黃光脈衝雷射之非週期性極化反轉鈮酸鋰晶體。

本論文也實際經過黃光微影製程,並利用高電場極化反轉製程做出電光非週期性極化反轉鈮酸鋰晶體,最後進行端面拋光以及鍍上端面的抗反射膜。
在實際量測上本實驗對電光非週期性鈮酸鋰極化轉鈮酸鋰晶體施加三種不同的Y方向電場來達到單段或雙波長輸出,經由三面共軸線性的共振鏡所組成的Nd:YVO4雷射系統中,調整M2 & M3的距離使兩波長增益相同,在未施加電場下(0V/mm),可以同時輸出波長1064.5nm & 1342.33nm之最高能量cw雷射;在施加電場267V/mm下,可以只輸出波長1064.5nm之最高能量cw雷射;在施加895V/mm,可以只輸出波長1342.33nm之cw雷射。
另外我們還對電場做了一個容忍度的量測,在施加DC電場244V/mm到285V/mm,總共42V/mm的容忍度都可以只單一輸出1064.5nm訊號光cw雷射光,而在施加DC電場884V/mm到916V/mm,總共33V/mm的容忍度都可以只單一輸出1342.33nm訊號光cw雷射光。

另外用電光非週期性鈮酸鋰極化轉鈮酸鋰晶體施加三種不同的Q調制系統來達到五種不同波長的雷射脈衝雷射光產生,其一為在電場267V/mm & 685V/mm的Q開關快速切換之下可產生1064.5nm脈衝雷射光,其最窄的脈衝寬度為約為9.6171ns,其腔內的尖峰功率約為18580瓦與經由鈮酸鋰晶體所產生的非相位匹配(non-phase matching)之二倍頻532nm綠光脈衝雷射光,綠光最窄的脈衝寬度為約為8.7368ns,其尖峰功率約為30.8瓦。
其二為在電場895V/mm & 685V/mm的Q開關快速切換之下可產生1342.33nm脈衝雷射光,其最窄的脈衝寬度為約為25.4740ns,其腔內的尖峰功率約為6332瓦與經由鈮酸鋰晶體所產生的非相位匹配(non-phase matching)之二倍頻671nm紅光脈衝雷射光,紅光最窄的脈衝寬度為約為15.0374ns,其尖峰功率約為9.7瓦。
其三為在電場0V/mm & 685V/mm的Q開關快速切換之下可產生1064.5nm & 1342.33nm脈衝雷射光,並經過鈮酸鋰晶體之和頻機制而得到的非相位匹配(non-phase matching)593nm脈衝雷射橘黃光,593nm橘黃光最窄的脈衝寬度為約為8.0198ns,其尖峰功率約為74.19瓦。

在未來可選擇兩個波長距離相對於較近的波長,例如使用增益晶體為Nd:YLF的雷射系統(受激輻射頻譜為1047nm & 1053nm),並且又能用在電光調制下分開並且選頻,這將會是一大進步。
In this thesis, we demonstrated an aperiodically poled lithium niobate (APPLN) crystal, which designed by the simulated annealing method for simultaneously being an electro-optic (EO) laser-line switch and an EO Q-switch in a dual-wavelength Nd:YVO4 laser. The demonstrated system can realize dual-wavelength selection of both or either one of the 1064.5nm and 1342.33nm laser lines simply by EO tuning (via voltage switching), which features ultra-fast switching speed in contsrast to those using slow mechanical or thermal tuning mechanisms.

In this study, we first successfully achieved wavelength selection via EO tuning in a cw dual-wavelength 1064.5nm and 1342.33nm laser; both laser lines can be produced when no external electric field is applied to the APPLN device, while only the 1064.5nm laser line and only the 1342.33nm laser line can be produced when electric fields of 267V/mm and 895V/mm are applied to the APPLN, respectively, with electric-field tuning tolerances of ~42V/mm and ~33V/mm, respectively.

Moreover, when the novel APPLN device in the dual-wavelength Nd:YVO4 laser system is switched between 267V/mm and 685V/mm electric fields at a repetition rate of 1kHz, we can obtain pulsed 1064 nm laser generation (~18.5kW peak power), accompanying with non-phase-matched second-harmonic (SH) 532 nm green laser generation (~30 W peak power). When the laser system is switched between 895V/mm and 685V/mm electric fields at a repetition rate of 1kHz, we can obtain pulsed 1342 nm laser generation (~6.3kW peak power), accompanying with non-phase-matched SH 671 nm red laser generation (~9.7 W peak power). Moreover, when the laser system is switched between 0V/mm and 685V/mm electric fields at a repetition rate of 1kHz, we can obtain pulsed 1064 and 1342 nm dual-line laser generation, accompanying with non-phase-matched sum-frequency 593 nm orange laser generation (~74 W peak power). The novel Nd:YVO4 laser system using an APPLN crystal as simultaneously an EO laser-line switch and an EO Q-switch can thus produce pulsed 1064 nm, 1342 nm, 593 nm orange, 532 nm green, and 671 nm red generations simply by EO tuning.
第一章 緒論..1
1.1發展與簡史........1
1.2鈮酸鋰晶體........2
1.3雷射增益晶體Nd:YVO4........5
1.4研究動機........8
1.5內容概要........16
第二章 理論分析..17
2.1電光效應........17
2.2索爾克濾波器與在具電光係數的鈮酸鋰上製作索爾克濾波器........24
2.3共振腔Q調制(Q-switching)........28
2.4和頻機制(Sum Frequency Generation, SFG)........35
第三章 元件設計理論與過程..40
3.1電光雙波長非週期性晶疇極化反轉結構........40
3.2模擬退火法........41
3.3電光偏振調制在非週期性晶疇極化反轉結構之模擬機制........46
第四章 元件模擬設計與晶片製作流程..53
4.1 元件模擬設計與參數設定........53
4.2晶疇極化反轉之黃光製程........54
4.3使用加高電場法使晶疇反轉過程與晶疇反轉製程........58
第五章 元件模擬設計結果與實驗量測結果分析..68
5.1 雙波長電光非週期性偏振調制模擬結果........68
5.2實驗架構與結果分析........74
第六章 實驗結論與未來展望..104
6.1 實驗結論........104
6.2 未來展望........105
第七章 參考文獻..108
7.1 第一章參考文獻........108
7.2 第二章參考文獻........111
7.3 第三章參考文獻........111
7.4 第四章參考文獻........112
7.5 第六章參考文獻........112
7.1 第一章參考文獻
[1.1] A. Einstein, “Zum gegenwärtigen Stande des Strahlungsproblems.” Physikalische Zeitschrift, Band 10, Seite, p.185–193, (1909)
[1.2] A. Einstein, “Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung.”, Physikalische Zeitschrift, Band 10, Seite, p.817–825, (1909)
[1.3] M. Planck, “On the law of distribution of energy in the normal spectrum.”, Annalen der physik 4.553, p.1, (1901)
[1.4] A. Einstein, “Zur quantentheorie der strahlung.”, Physikalische Zeitschrift, 18, Seite, p.121-128, (1917)
[1.5] T. H. Maiman, “Stimulated optical radiation in ruby.”, Nature, 187, p.493-494, (1960)
[1.6] P. A. Franken, A. E. Hill, C. W. Peter, G. Weinreich, “Generation of Optical Harmonics.”, Physical Review Letters, Vol.7, Number 4, p.118, (1961)
[1.7] J. A. Giordmaine, “Mixing of light beam in crystal.”, Phys. Rev. Lett. 8, P.19, (1962)
[1.8] M. Bass, P. A. Franken, A. E. Hill, C. W. Peter, G. Weinreich, “Optical Mixing.”, Physical Review Letters, Vol.8, Number 18, (1962)
[1.9] W. H. Zachariasen, “Skr. Norske Vid-Ada.”, Oslo, Mat. Naturv, No.4, (1928)
[1.10] A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique.”, J. American Ceram. Soc. 48, p.112, (1965)
[1.11] H. D. Megaw, “A note on the structure of lithium niobite.”, Acta. Cryst. A24, p.583, (1968)
[1.12] 胡明理,「Zn:LiNbO3之晶體生長與其特性研究」,中央大學,(2004)
[1.13] P. Lerner, C. Legras and J. P. Duman, “Stoechiométrie des Monocristaux de Métaniobate de Lithium.”, Journal of Crystal Growth,3-4, (1968)
[1.14] K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system.”, J. Crystal Growth 116, p.327, (1992)
[1.15] 孔勇發,許京軍,張光寅,劉思敏,陸猗,「多功能光電材料 – 鈮酸鋰晶體」,科學出版社,(2005)
[1.16] Y. C. Huang, “Principles of Nonlinear Optics Course Reader.”, Institute of Photonics Technologies / Department of Electrical Engineering, 65 National Tsinghua University, Hsinchu, Taiwan, (2007)
[1.17] 姚健全,徐德剛,「全固態激光及非線性光學頻率轉換技術」,科學出版社,(2007)
[1.18] C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06μm wavelength.” Appl. Phys. B 70(4), p.471-474, (2000)
[1.19] 葉士瑋,陳永富,「熱效應對連續波雷射與脈衝波雷射的影響: 傳統晶體與鍵合晶體的比較」,國立交通大學,碩士論文,民國100年。
[1.20] 張專慶,陳永富,「利用緊貼組合Nd:YAG 及Nd:YVO4 晶體 實現高效率雙波長946 nm 及1064 nm 雷射」,國立交通大學,碩士論文,民國101年。
[1.21] N. Dai Hung, P. Brechignac, “Tunable alternate double-wavelength single grating dye laser for DIAL Systems.”, Applied optics 27.10, p.1906-1908, (1988)
[1.22] I. Mattis, A. Ansmann, D. Müller, U. Wandinger, D. Althausen, “Dual‐wavelength Raman lidar observations of the extinction‐to‐backscatter ratio of Saharan dust.”, Geophysical Research Letters 29.9, p.20-1 (2002)
[1.23] A. Arie, A. Burstein, “Electro-optical device and a wavelength selection method utilizing the same.”, U.S. Patent No. 6, 584, 260. 24 Jun, (2003)
[1.24] X. Feng, L. Sun, L. Xiong, Y. Liu, S. Yuan, G. Kai, X. Dong, “Switchable and tunable dual-wavelength erbium-doped fiber laser based on one fiber Bragg grating.”, Optical Fiber Technology 10.3, p.275-282, (2004)
[1.25] S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror.”, IEEE photonics technology letters 17.7, p.1387-1389, (2005)
[1.26] S. T. Lin, C. S. Hsieh, “Triple-wavelength Nd-laser system by cascaded electro-optic periodically poled lithium niobate Bragg modulator.”, Optics express 20.28, p.29659-29664, (2012)
[1.27] Y. H. Chen, Y. C. Huang, “Actively Q-switched Nd: YVO 4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch.” Optics letters 28.16, p.1460-1462, (2003)
[1.28] 張煒堃,「以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射」,國立中央大學,碩士論文,民國98年。
[1.29] F. Ji, B. Zhang, E. Li, H. Li, R. Zhou, T. Zhang, ..., J. Yao, “Theoretical study of the electro-optic effect of aperiodically poled lithium niobate in a Q-switched dual-wavelength laser.”, Optics communications 262.2, p.234-237, (2006)
[1.30] W. K. Chang, Y. H. Chen, J. W. Chang, “Pulsed orange generation optimized in a diode-pumped Nd: YVO4 laser using monolithic dual PPLN electro-optic Q switches.” Optics letters 35.16, p.2687-2689, (2010)
[1.31] J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. L. Mortensen, P. Buchhave, F. Laurell, “Efficient all solid-state continuous-wave yellow-orange light source.”, Optics Express 13.4, p.1188-1192, (2005)
[1.32] Copper vapor laser. 取http://en.wikipedia.org/wiki/Copper_vapor_laser
[1.33] Dye laser . 取自 http://en.wikipedia.org/wiki/Dye_laser

7.2 第二章參考文獻
[2.1] D. K. Cheng, “Field and Wave Electromagnetics.” Chap.3 India:Pearson International Edition, (1989)
[2.2] D. H. Jundt, “Temperature-dependent Sellmeier Equation for the Index of Refraction, ne, in Congruent Lithium Niobate.”, Optics Letters, Vol. 22, No. 20, (1997)
[2.3] I. Šolc, “Birefringent chain filters.”, J. of OSA Vol.55, No.6, (1965)
[2.4] D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, “An electro‐optic tunable filter.” Applied Physics Letters 34.6, p.391~393, (1979)
[2.5] X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobite.”, Optics letters 28.21, p.2115-2117, (2003)
[2.6] R. Dunsmuir, “Theory of Relaxation Oscillations in Optical Masers.”, J. Electron Control 10, p.453-458, (1961)
[2.7] O. Svelto, D. C. Hanna, “Principles of lasers.”, Vol. 4. New York: Plenum press, (1998)
[2.8] R. W. Boyed, “Nonlinear optics. Elsevier.”, (2003)

7.3 第三章參考文獻
[3.1] Y. Y. Zhu, N. B. Ming, “Second-harmonic generation in a Fibonacci optical superlattice and the dispersive effect of the refractive index.”, Physical Review B 42.6 p.3676, (1990)
[3.2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equation of state calculations by fast computing machines.”, The journal of chemical physics 21.6, p.1087-1092, (1953)
[3.3] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing”, science 220.4598, p.671-680, (1983)
[3.4] W. L. She, W. K. Lee, “Wave coupling theory of linear electro-optic effect”, Opt. Comm. 195, p.303-311, (2001)
[3.5] J. Shi, X. Chen, Y. Xia, Y. Chen, “Electro-optical polarization controller based on solc filter in periodically poled lithium niobate”, SPIE 65 Vol. 4905, (2002)
[3.6] C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Hung, J. Y. Chang, “Electro-optic narrowband and multi-wavelength filter in aperiodically poled lithium niobate”, Opt. Exp. Vol.15, No.15, (2007)

7.4 第四章參考文獻
[4.1] G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance.”, Diss. Stanford university, (1998)

7.5 第六章參考文獻
[6.1] 李瑋倫,陳永富「摻釹氟化釔鋰晶體在連續波與被動式 Q 開關雷射之研究。」,國立交通大學,碩士論文,民國99年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔