(18.207.240.230) 您好!臺灣時間:2020/07/09 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:張鉑瑋
研究生(外文):Bo-Wei Chang
論文名稱:以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
論文名稱(外文):Adsorption and diffusion of Au1~2 atoms on θ-Al2O3(001) surface : a first principle study
指導教授:羅夢凡
指導教授(外文):Meng-Fan Luo
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
畢業學年度:97
語文別:英文
論文頁數:65
中文關鍵詞:第一原理密度泛函理論氧化鋁金奈米粒子
外文關鍵詞:first principleDFTθ-Al2O3Au nano-clusters
相關次數:
  • 被引用被引用:2
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
我們使用第一原理方法計算一到二顆金原子在θ型氧化鋁(001)表面上的吸附與漂移行為。首先推測了塊材氧化鋁的一截面作為吸附表面後,在所有可能吸附位置上放置第一顆金原子並投入計算,觀察結果單一顆金原子的吸附能皆低於室溫穩定吸附標準,且在表面移動所需克服的位障亦小,使得它降落表面後能迅速朝各方向漂移,且短時間內沒遇到更好的吸附狀況,則會於表面脫附。接著放置第二顆金原子在已吸附的第一顆金原子的周圍,以及直接將兩顆金原子放置在表面的對稱處用來當作金分子的漂移中間態,計算觀察結果為金分子對表面的吸附能好於單一金原子,且喜歡以立起來的方式與表面上的一顆氧鍵結,而在表面的漂移方式則喜以立起來後直接平移移動,以立起來、躺下、立起來這種滾動方式漂移的機會較少。
We have studied the adsorption and diffusion of Au1~2 atoms on θ-Al2O3(001) surface with density-functional-theory calculations. The results show that the adsorption energy (0.17-0.35 eV) and the diffusion barrier (smaller than 0.1 eV) of a single Au atom on the oxide are small. The adsorbed Au atom is expected to diffuse with no substantial energy barriers and substantial preference in any specific direction at room temperature. For dimer Au2 on the oxide surface, the calculations indicate that the dimer is thermally more stable than monomer, with an oxide-Au bonding energy 0.78 eV, and favors a geometry that one Au atom bonds with an O of the oxide surface and the other dangles. The dimer Au2 prefers to diffuse on the oxide in stand-up way more than in rolling way.
Contents
Chapter 1 Introduction.........................................................................................1
Reference..................................................................................................3
Chapter 2 Literature Survey...............................................................................5
2-1 Al2O3/NiAl(100)………………………………………………………5
2-1-1 The properties of NiAl (100)……………………...……………….5
2-1-2 θ-Al2O3 growth on NiAl (100)……………………………………..6
2-2 Diffusion of atoms on a surface……………………………………….9
2-3 Literature survey of metal clusters on metal-oxide surface studied with DFT calculations………………………...…………………………...11
Reference…………………………………….…………………………13
Chapter 3 Calculation Methods…………………………….……………….14
3-1 Born-Oppenheimer approximation………….…….………………....14
3-2 Hartree-Fork equation………………………….…………………….15
3-3 Hartree-Fork approximation…………………………………………17
3-4 Density functional theory…………………………………………….17
3-5 Local Density Approximation………………..…………...………….20
3-6 Generalized Gradient Approximation…………….………………….21
3-7 Pseudopotential……………………...……………………………….24
Reference……………………………………………………………….28
Chapter 4 Results and Discussion …………………………………….….…29
4-1 Determining the surface structure of θ-Al2O3(001)………....……….29
4-2 1~2Au on θ-Al2O3(001)……….......................................……………36
4-2-1 Determining the slab thickness of the θ-Al2O3(001) model….....36
4-2-2 Adsorption of Au1~2 atoms on θ-Al2O3(001) surface…..……….38
4-2-3 Diffusion of Au1~2 on the θ-Al2O3(001) surface…..……………….61
Reference……………………………….………………………………64
Chapter 5 Summary and Future work…………………………………….65
[1] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 2 (1987) 405.
[2] B. Hammer, J.K. Nørskov, Nature 376 (1995) 238.
[3] P. Pyykkö, Angew. Chem. Int. Ed. 43 (2004) 4412.
[4] N. Saliba, D.H. Parker, B.E. Koel, Surf. Sci. 410 (1998) 270;
J. Wang, B.E. Koel, J. Phys. Chem. A 102 (1998) 8573;
A.G. Sault, R.J. Madix, C.T. Campbell, Surf. Sci. 169 (1986) 347.
[5] T. Salama, R. Ohnishi, T. Shido,M. Ichikawa, J. Catal. 162 (1996) 169.
[6] J.A. Rodriguez, G. Liu, T. Jirsak, J. Hrbek, Z. Chang, J. Dvorak, A. Maiti, J. Am. Chem. Soc. 124 (2002) 5242.
[7] J.A. Rodriguez, M. Pérez, T. Jirsak, J. Evans, J. Hrbek, L. González, Chem. Phys. Lett. 378 (2003) 526.
[8] T. Hayashi, K. Tanaka, M. Haruta, J. Catal. 178 (1998) 566.
[9] R. Grisel, K.J. Weststrate, A. Gluhoi, B.E. Nieuwenhuys, Gold Bull. 35 (2002) 39.
[10] C. Lemire, R. Meyer, S. Shaikhutdinov, H.J. Freund, Angew. Chem. Int. Ed. 43 (2004) 118.
[11] R. Zanella, S. Giorgio, C.H. Shin, C.R. Henry, C. Louis, J. Catal. 222 (2004) 357.
[12] M. Haruta, Catal. Today 36 (1997) 153.
[13] G.C. Bond, D.T. Thomson, Catal. Rev.-Sci. Eng. 41 (1999) 319.
[14] J.-D. Grunwaldt, C. Kiener, C. Wögerbauer, A.J. Baiker, J. Catal. 181 (1999) 223.
[15] J.-D. Grunwaldt, A. Baiker, J. Phys. Chem. B 103 (1999) 1002.
[16] J.-D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli, A. Baiker, J. Catal. 186 (1999) 458.
[17] M. Haruta, in: 3rd World Congress on Oxidation Catalysis, San Diego, 1997, p.123.
[18] M. Haruta, M. Daté, Appl. Catal. A 222 (2001) 427.
[19] M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, J. Catal. 113 (2001) 197.
[20] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, Surf. Sci. 602 (2008) 241-248
[21]. Nicolas Frémy, Vincent Maurice, and Philippe Marcus, J. Am. Ceram. Soc., 86 (2003) 669–75
[22]. Vincent Maurice, Nicolas Frémy, Philippe Marcus, Surf. Sci. 581 (2005) 88–104
[1] From atoms to crystallites: adsorption on oxide-supported metal Particles.
Martin Frank and Marcus Baumer, Phys. Chem. Chem. Phys..
[2] Bor-Ru Sheu and D. R. Strongin, Journal of ctalysis 154 (1995) 379-390.
[3] Ch. ToÈlkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa, Phys. Rev. Lett. 80 (1998) 2877.
[4] Ralf-peter Blum, Dirk Ahlbehrendt, Horst Niehus, Surf. Sci. 366 (1996) 107-120.
[5] Ralf-peter Blum, Dirk Ahlbehrendt, Horst Niehus, Surf. Sci. 396 (1998) 176-188.
[6] D.R. Mullins, S.H. Overbury, Surf. Sci. 199 (1988) 141.
[7] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (1988) 1942-1951.
[8] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95-109.
[9] K.-H. Hellwege, Ed., Landolt-Börnstein, Bd.ш/7b(Springer, Heidelberg, 1975).
[10]. M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, and C.C. Kuo, Nanotechnology 17 (2006) 360.
[11] King-Ning Tu, James W. Mayer, Leonard C. Feldman, Electronic Thin Film Science, Capture 5.1
[12] Charles Kittel and Herbert Kroemer, Thermal Physics, 2nd ed. (Freeman & Co.: New York, 1980).
[13] Andrea Vittadini, Annabella Sellini, J. Chem. Phys. 117 (2002) 353
[14] Yun Wang, Gyeong S. Hwang, Surf. Sci. 542 (2003) 72-80
[15] You Han, Chang-jun Liu, Qingfeng Ge, J. Phys. Chem. B 110 (2006) 7463-7472
[16] Chenggang Zhou, Jinping Wu, T. J. Dhilip Kumar, Naduvalath Balakrishnan, Robert C. Forrey, Hansong Cheng, J. Phys. Chem. C 111 (2007) 13786-13793
[1] M. Born and K. Huang, Dynamical Theory of Crystal Lattice. Oxford University Press, 1954.
[2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[3] W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
[4] D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[5] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[6] J. P. Perdew, Y. Wang, Phys. Rev. B. 45, 13244 (1992).
[7] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998).
[1]. Husson, E.; Repelin, Y., ICSD, CC=82504
[2]. P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95-109.
[3]. Nicolas Frémy, Vincent Maurice, and Philippe Marcus, J. Am. Ceram. Soc., 86 (2003) 669–75
[4]. Vincent Maurice, Nicolas Frémy, Philippe Marcus, Surf. Sci. 581 (2005) 88–104
[5]. M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942–1951
[6]. J. Ho, K. M. Erwin, and W. C. Lineberger, J. Chem. Phys. 93 (1990) 6987
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔