(34.204.189.171) 您好!臺灣時間:2019/10/16 17:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:應灝
研究生(外文):Hao ying
論文名稱:從微積分課後輔導,分析學生的數學學習問題:以一個助教的實例作探討
論文名稱(外文):Analyzing students’ mathematical learning problems from the calculus consulting program: a tutoring case study
指導教授:蕭嘉璋
指導教授(外文):HSIAO-Chia Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:53
中文關鍵詞:滯後序列分析微積分課後輔導
外文關鍵詞:calculus consulting programlag-sequential analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:1
這篇論文探討了微積分課後輔導的討論內容,目標是了解學生普遍的數學能力和微積分的學習問題。這篇論文結合了序列分析法和質性內容分析,來研究討論內容。藉由紀錄與分類討論內容,我們發現了自願前來課後輔導的學生們的一些學習態度和動機。根據這些結果,這篇論文提供一些策略和建議,包括老師的教學應該試著與學生有更多連結,課後輔導助教應該幫助學生自己去分析和組織不同的問題,意見和結論。
The purpose of this research is to discuss the content and the process of the calculus consulting program. Also, the aims of this paper are to observe those students’ general mathematical ability and their general learning problem about calculus. This research has used non-sequential, lag-sequential analysis and quantitative content analysis as the tool to analyze the data. And the data came from the content of discussion during consulting program. By recording and classifying those data in different methods, it revealed certain student’s learning attitude and the motivation of coming to calculus consulting program. Based on the result, this paper proposed some suggestions that teachers should not teach contexts too fast or skip important examples which contain some algorithmic skills. Moreover, tutors should let students help each other analyzing and organizing some different problems, opinions or results.
目錄
中文摘要................................................iii
英文摘要.................................................iv
誌謝......................................................v
目錄.....................................................vi
圖目錄..................................................vii
表目錄.................................................viii
Abstract............. ....................................1
1.Introduction............................................2
2. Literature review......................................4
2-1 Communication pragmatic..............................4
2-2 Interaction between student, teacher, and context: The equivalency theorem...................................... 8
2-3 The lag-sequential analysis.................................................10
3.Methods................................................12
3-1 participants.........................................12
3-2 procedure....... ....................................12
3-3 instrument...........................................14
4.Result.................... ............................19
5. Discussion....... ....................................29
5-1 The student’s attitude toward the calculus consulting program..................................................29
5-2 the learning problem of calculus.....................30
5-3 the student’s general mathematical ability..........34
6. Conclusion............................................36
6-1 summarize the study..................................36
6-2 suggestion...........................................38

Reference................................................40
[1].Anderson, T. (2003). Getting the mix right again: An updated and theoretical rationale for interaction. International Review of Research in Open and Distance Learning, 4(2). Retrieved from http://www.irrodl.org/index.php/irrodl/article/view/149/230

[2].Wagner, E. D. (1994). In support of a functional definition of interaction. The American Journal of Distance Education, 8 (2), 6-26.

[3].Terumi Miyazoe, Terry Anderson(2010).In Journal of Interactive Online Learning.The Interaction Equivalency Theorem

[4].Miyazoe, T., & Anderson, T. (2010). Empirical research on learners’ perceptions: Interaction Equivalency Theorem in blended learning, with Terry Anderson, European Journal of Open, Distance and E-Learning, Retrieved from http://www.eurodl.org/?article=397

[5].Chun-Yi Lee and Ming-Puu Chen (2010); Taiwanese junior high school students’ mathematics attitudes and perceptions towards virtual manipulatives ; British Journal of Educational Technology Vol 41 No 2 2010 E17–E21

[6].GRAHAM D. HENDRY(2006) ;Problem-based learning tutors’ conceptions of their development as tutors; Institute for Teaching and Learning
[7].Oon Seng Tan (2004); Student’s experience in problem-based learing: three blind mice episode or educational innovation? ; Innovations in Education and Teaching International Vol. 41, No 2, May 2004

[8].Elizabeth Owen and John Sweller (1989); Journal for Research in Mathematics Education Vol. 20, No. 3, May, 1989

[9].Jeffrey, B., Craft, A. Teaching creatively and teaching for creativity: Distinctions and relationships (2004) Educational Studies, 30 (1), pp. 77-87.

[10].Creative mathematics teaching in the eye of the beholder: Focusing on teachers'' conceptions Lev-Zamir, H., Leikin, R. Volume 13, Issue 1, March 2011, Pages 17-32

[11].Haylock, D.W. A framework for assessing mathematical creativity in school chilren (1987) Educational Studies in Mathematics, 18 (1), pp. 59-74.

[12].Leikin, R. Exploring mathematical creativity using multiple solution tasks (2009) Creativity In Mathematics and The Education of Gifted Students, pp. 129-145.

[13].Samuelsson, J. The impact of teaching approaches on Students'' mathematical proficiency in Sweden International Electronic Journal of Mathematics Education Volume 5, Issue 2, July 2010, Pages 61-78

[14].Boaler, J. Participation, knowledge and beliefs: A community perspective on mathematics learning (1999) Educational Studies in Mathematics, 40 (3), pp. 259-281.

[15].Boaler, J. The development of disciplinary relationships: Knowledge, practice, and identity in mathematics classroom (2002) For the Learning of Mathematics, 22 (1), pp. 42-47.

[16].Onatsu-Arvilommi, T., Nurmi, J.-E., Aunola, K.The development of achievement strategies and academic skills during the first year of primary school (2002) Learning and Instruction, 12 (5), pp. 509-527.

[17].Ward, B.B., Campbell, S.R., Goodloe, M.R., Miller, A.J., Kleja, K.M., Kombe, E.M., Torres, R.E. Assessing a Mathematical Inquiry Course: Do Students Gain an Appreciation for Mathematics? PRIMUS Volume 20, Issue 3, April 2010, Pages 183-203

[18].Carter, G., Norwood, K.S. The relationship between teacher and student beliefs about mathematics (1997) School Science and Mathematics, 97 (2), pp. 62-67.

[19].Dynamic mathematics with GeoGebraHohenwarter, M., Preiner, J. Journal of Online Mathematics and its Applications March 2007, Article number 1448

[20].Klymchuk, S., Zverkova, T., Gruenwald, N., Sauerbier, G. University students'' difficulties in solving application problems in calculus: Student perspectives Mathematics Education Research Journal Volume 22, Issue 2, 2010, Pages 81-91

[21].Arsalan Wares, Using origami boxes to explore concepts of geometry and calculus, International Journal of Mathematical Education in Science and Technology Volume 42, Issue 2, March 2011, Pages 264-272

[22].Gallegos, I., Flores, A. (2010), Using student-made games to learn mathematics PRIMUS Volume 20, Issue 5, July 2010, Pages 405-417

[23].Carpente, L. Using Web-based technologies to reach and engage millennial students in calculus, ASEE Annual Conference and Exposition, Conference Proceedings 2009, 14p

[24].Shirvaikar, M., Pieper, R. , Beams, D. Back to basics: A student-tutor matching program ASEE Annual Conference and Exposition, Conference Proceedings
2006, 10p

[25].Yokota H. On development of an adaptive tutoring system for calculus learning AIP Conference Proceedings Volume 1247, 2010, Pages 276-287

[26].Hou, H.-T., Chang, K.-E., & Sung, Y.-T. (2008). Analysis of Problem-Solving-Based Online Asynchronous Discussion Pattern. Educational Technology & Society, 11 (1), 17-28.

[27].Crawford, K., Gordon, S., Nicholas, J., Prosser, M.(1994). Conceptions of mathematics and how it is learned: The perspectives of students entering university Learning and Instruction Volume 4, Issue 4, 1994, Pages 331-345

[28].Norwich, B. (1987) Self-Efficacy and Mathematics Achievement: A Study of Their Relation Journal of Educational Psychology Volume 79, Issue 4, December 1987, Pages 384-387

[29].Cohen, D. K., & Ball, D. L. (1999). Instruction, capacity, and improvement. Philadelphia, PA: Consortium for Policy Research in Education, University of Pennsylvania (CPRE RR-43).

[30].Puustinen,M., Bernicot,J.a , Bert-Erboul.A(2011)Written computer-mediated requests for help by French-speaking students: Ananalysis of their forms and functions Learning and Instruction Volume 21, Issue 2, April 2011, Pages 281-289

[31].Searle, J. R. (1979). Expression and meaning. New York: Cambridge University Press.

[32].Searle, J. R., & Vanderveken, D. (1985). Foundations of illocutionary logic. New York: Cambridge University Press.

[33].Puustinen, M., Kokkonen, M., Tolvanen, A., & Pulkkinen, L. (2004). Children‟s help seeking and impulsivity. Learning and Individual Differences, 14(4), 231-246. 13

[34].Puustinen, M., Lyyra, A.-L., Mets?pelto, R.-L., & Pulkkinen, L. (2008). Children‟s help seeking: The role of parenting. Learning and Instruction, 18(2), 160-171.

[35].Ervin-Tripp, S. (1977). Is Sybil there? The structure of some American English directives. Language in Society, 5(1), 25-66.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔