(34.204.176.189) 您好!臺灣時間:2019/09/17 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:戴薇安
研究生(外文):Dewi Anggraeni
論文名稱:二氧化碳在62-120nm的光化學
論文名稱(外文):Photochemistry of carbon dioxide at 62–120 nm
指導教授:倪簡白
指導教授(外文):Jan-Bai Nee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:88
外文關鍵詞:carbon dioxidephotoabsorption cross sectionfluorescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,吸收和熒光發射光譜的二氧化碳進行了研究,利用同步輻射光源從 6m高通量光束線在SRRC,台灣。光吸收截面的二氧化碳在波長62 - 120納米已而得。吸收和熒光測量也已被用來分配裡德堡態匯聚成CO2+ (X2 ?g1/2),田中,小川系列匯聚成CO2+ (A 2?u),亨寧漫和夏普系列匯聚成CO2+ (B 2?u+), 並 TJL系列匯聚成CO2+ (C2?g+). 電離勢(IP)為 CO2 +離子狀態已經來自這項任務,如IP為CO2+ (A 2?u)是17.36 eV的,IP為CO2+ (B 2?u+) 為18.07 eV的,和IP CO2+ (C2?g+) 為19.39 eV的。從熒光光譜,我們觀察到第四個積極的波段內,排放的二氧化碳(A1??– X1?+) 在69 - 80 nm的入射光子的能量。O(1S)的生產從二氧化碳光解波長範圍在105 - 120納米也被觀察到使用高壓氙氣,以提高O(1S)到O(1D)的過渡。從這個結果我們發現,二氧化碳 1?u+ 是一個具有挑戰性的光解通道O(1S),我們還建議,3p? 1?u狀態可能是一個通道,產生 O(1S)。
In this thesis, absorption and fluorescence emission spectra of carbon dioxide have been studied using synchrotron radiation light source from 6m-high flux beamline at SRRC, Taiwan. Photoabsorption cross section of carbon dioxide at wavelength 62 – 120 nm has been derived. Absorption and fluorescence measurement also has been used to assign Rydberg states converging to CO2+ (X2 ?g1/2), Tanaka-Ogawa series converging to CO2+ (A 2?u), Henning Diffuse and Sharp series converging to CO2+ (B 2?u+), and TJL series converging to CO2+ (C2?g+). Ionization potential (IP) for CO2+ ionic state has been derived from this assignment, such as IP for CO2+ (A 2?u) is 17.36 eV, IP for CO2+ (B 2?u+) is 18.07 eV, and IP for CO2+ (C2?g+) is 19.39 eV. From the fluorescence spectrum, we observed fourth positive band as a emission of CO (A1??– X1?+) at 69 – 80 nm incident photon energy. O(1S) production from CO2 photodissociation in the wavelength range 105 – 120 nm has also been observed using high pressure Xenon to enhance O(1S) to O(1D) transition. From this result we observed that CO2 1?u+ be a challenging photodissociation channel of O(1S) and we also suggest that 3p? 1?u states may be a channel to produce O(1S).
ABSTRACT........................................i
摘要............................................ii
ACKNOLEDGEMENTS.................................iii
CONTENT.........................................iv
List of Figure..................................vi
List of Table...................................viii
1. INTRODUCTION.................................1
1.1.Research Background.........................1
1.2. Spectroscopy Research......................1
1.3. Research Objection.........................2
2. GENERAL BACKGROUND...........................3
2.1. Molecular Orbital of CO2...................3
2.2. Electronic Transition in CO2...............6
2.2.1. Electronic Energy Level of CO2...........6
2.2.2. Vibrational Energy of CO2................7
2.3. Ionization Energies of CO2 state...........9
2.4. Review of Photoabsorption of CO2...........10
2.5. Photodissociation of CO2...................11
2.5.1. Fourth Positive Band.....................13
2.5.2. O(1S) product of Photodissociation of CO2..13
2.6. Oxygen Atomic Transition...................15
3. EXPERIMENTAL SETUP...........................18
3.1. Light Source...............................18
3.2. Gas Cell System............................22
3.3. Vacuum Maintenance.........................22
3.4. Alignment and Collimation..................23
3.3. Signal Detection System....................23
3.5. Background measurement.....................23
3.6. Absorption Spectrum........................24
3.7. Fluorescence Spectrum......................24
3.8. Data Acquisition System....................25
4. RESULT AND DISCUSSION........................26
4.1. Consistence of Synchrotron Light Source....26
4.2. Wavelength Calibration.....................27
4.3. Photoabsorption cross section of carbon dioxide...29
4.3.1. Photoabsorption Cross Section in region I 105 – 120 nm...29
4.3.2. Photoabsorption Cross Section in region II : 85 - 105 nm...40
4.3.3. Photoabsorption Cross Section in region region III : 62 - 85 nm...41
4.4. Florescence Excitation Spectra of Carbon Dioxide...48
4.4.1. FES of CO2+(A2u X2g) and CO2+ (B 2u+ X 2u )emissions...48
4.4.2. Fluorescence of the CO.................53
4.5. Review of Ionization Threshold for A, B, and C ionic state of carbon dioxide.......................53
4.6. Production of O(1S) from CO2 Photodissociation....57
5. CONCLUSSION...............................63
6. BIBLIOGRAPHY..............................64
7. APPENDIX..................................67
1. Y. L. Yung and W. B. DeMore. Photochemistry of Planetary Atmospheres. Oxford
University Press, New York, pp. 282 - 287 (1999)
2. O. Witasse and A.F. Nagy, Planetary and Space Science. 54, pp. 1381–1388 (2006)
3. T. G. Slanger, D. L. Huestis, P. C. Cosby, N. J. Chanover, and T. A. Bida, Icarus. 182, pp.
1 – 9 (2006)
4. A. Barron. Carbon Dioxide, Connexions Web site. http://cnx.org/content/m32935/latest/,
Jan 20, (2010)
5. W.B. England, W.C. Ermler, and A.C. Wahl, J. Chem. Phys. 66, pp. 2336 (1977)
6. E. P. Gentieu and J. E. Mentall, J. Chem. Phys. 58, pp. 4803 (1973)
7. E. Olalla and I. Martin, International Journal of Quantum Chemistry. 99, pp. 502 – 510
(2004)
8. J. W. Rabalais J. M. McDonald, V. Scherr and S. P. McGlynn, Chem. Rev. 71, pp. 73–108
(1971)
9. M. Ogawa, J. Chem. Phys. 54, pp. 2550-2556 (1971)
10. D.E. Shemansky, J. Chem. Phys. 56, pp. 1582-1587 (1972)
11. B. R. Lewis and J. H. Carver, J. Quant. Spectrosc. Radiat. Transfer 30, pp. 297-309 (1983)
12. C. Cossart-Magos, M. Jungen, and F. Launay, Molec. Phys. 61, pp. 1077 (1987)
13. K. Yoshino, J.R. Esmond, Y. Sun, W.H. Parkinson, K. Ito, and T. Matsui, Quant.
Spectrosc. Radar. 55, pp. 5340 (1996)
14. H. Okabe. Photochemistry of Small Molecule. John Wiley & Son, Canada, pp. 208 - 213
(1978)
15. D.A. Shaw, D.M.P. Holland, M.A. Hayes, M.A. MacDonald, A. Hopkirk, S.M.
McSweeney, Chemical Physics. 198, pp. 381-396 (1995)
16. M. Ukai, K. Kameta, N. Kouchi, K. Nagano, Y. Hatano, and K. Tanaka, Journal of
Chemical Physics. 97, pp. 2835-2842 (1992)
17. I. Koyano, T. S. Wauchopt, and K. H. Welge, J. Chem. Phys. 63, pp.110-113 (1975)
18. L.R. LeClair and J. W. McConkey. J. Phys. B: At. Mol. Opt. Phys. 27, pp. 4039 (1994)
19. I. Koyano, T. S. Wauchopt, and K. H. Welge, J. Chem. Phys. 63, pp.110-113 (1975)
20. T. H. Dunning and P. J. Hay, J. Chem. Phys. 66, pp. 3767 (1977)
21. D. L. Cunningham and K. C. Clark, J. Chem. Phys. 61, pp. 1118-1124 (1974)
22. T.-F. Hsieh, L.-R. Huang, S.-C. Chung, T.-E. Dann,P.-C. Tseng, C. T. Chen and K.-L.
Tsang. J. Synchrotron Rad. 5, pp. 562 – 564 (1998)
23. User’s Manual of 6-m High Flux Beamline at SRRC (SRRC, 2011)
24. C. Cossart-Magos, F. Launay, and J. Parkin, Molec. Phys. 75, pp. 835 (1992)
25. C. Cossart-Magos, S. Leach, M. Eidelsberg, F. Launay, and F. Rostas, J. Chem. Soc.
Faraday Trans. 78, pp. 1477 (1982)
26. W. C. Price and D. M. Simpson, Proc. Roy. Soc. A. 169, pp. 501 (1938)
27. E. Lindholm, A. Fysik. 40, pp. 125 (1968)
28. C. Fridh, L, Asbrink and E. Lindholm, Chem. Phys. 27, pp. 169 (1978)
29. T. Baer and P.M. Guyon, J. Chem. Phys. 85, pp. 4765 (1986)
30. P.M. Dittman, D. Dill and J.L. Dehmer, Chem. Phys. 78, pp. 405 (1983)
31. A.C. Parr, P.M. Dehmer, J.L. Dehmer, K. Ueda, J.B. West, M.R.F. Siggel and M.A.
Hayes, J. Chem. Phys. 100, pp. 8768 (1994)
32. Y. Tanaka, A. S. Jursa, and F. J. Leblance, J. Chem. Phys. 32, pp. 1199 - 1205 (1960)
33. C. Fridh, L. Asbrink and E. Lindholm, Chem. Phys. 27, pp. 169 (1978)
34. N. Padial, G. Csanak, B.V. McKoy and P.W. Langhoff, Phys. Rev. A. 23, pp. 218 (1981)
35. P.M. Dittman, D. Dill and J.L. Dehmer, Chem. Phys. 78, pp. 405 (1983)
36. J.B. Nee, C. T. Kuo, Y. M. Chen, S. Y. Wang, and S.C. Li, Chinese Journal of Physics. 42,
pp. 65 – 73 (2004)
37. K. Yoshino, J. R. Esmond, Y. Sun, W.H. Parkinson, K. Ito, and T. Matsui , Journal of
Quantitative Spectroscopy and Radiative Transfer. 55, pp. 53 - 60 (1996)
38. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecule,
Van Norstand Reinhold Co., 1950
39. J.I. Steinfield, Molecules and Radiation, an Introduction to Modern Molecular
Spectroscopy. The Murray Printing Company, United States of America, pp. 82 - 99 (1985)
40. Y. M. Chen, Master Thesis Report. National Sun Yat-Sen University. 1998
41. G.M. Lawrence, J. Chem. Phys. 57, pp. 5616 (1972)
42. W. F. Chan, G. Cooper, and C. E. Brion, Chem. Phys. 178, pp. 401 (1993)
43. F. Billebaud, J. Crovisier, E. Lellouch, and T. Encrenaz, Planet. Space Sci . 39, pp. 213-218
(1991)
44. S. Svanberg, Atomic and Molecular Spectroscopy - Basic Aspect and Practical
Applications. Springer-Verlag, Berlin Heidelberg, pp. 35 – 36 (1991)
45. L.S. Wang, J.E. Reutt, Y.T. Lee and D.A. Shirley, J. Electron Spectry. Relat. Phenom. 47,
pp. 167 (1988)
46. G. R. Cook, P.H. Metzger, and M. Ogawa, J. Chem. Phys. 44, pp. 8 (1966)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔