(18.210.28.227) 您好!臺灣時間:2019/11/23 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:文氏秋妝
研究生(外文):Van Thi
論文名稱:膠體、盤狀粒子混合系統的兩階段動態相變區域
論文名稱(外文):Two-stage kinetic phase transition domain in platelet-colloid mixtures
指導教授:賴山強
指導教授(外文):S. K. Lai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:58
中文關鍵詞:膠體動態相變自由能密度最佳化三相共存
外文關鍵詞:colloidhelmoltz free energy density minimizationkinetic phase transitiontriple phase coexistence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
我們希望可以推廣自由能密度最佳化方法來研究相變的課題‧自由能密度最佳化方法是一個非常直覺的數值工具可以用來研究盤狀粒子、膠體的相變行為‧基本想法就是把總混合自由能密度定義成各別共存相自由能的相加,用其所佔據的體積和總體積的比例常數當作對總自由能密度的貢獻權重‧要使用此方法前,首先,必須先透過半巨正則系綜理論來建構盤狀粒子、膠體混合系統的自由能‧藉著自由體積理論和定標粒子理論,可以得到各共存相所佔據的體積比例‧而在做最佳化的過程,我們必須先求得固體和液體的自由能函式‧這部分可以透過Fundamental measurement theory(FMT)來求得‧自由能最佳化的方法和傳統上求壓力和化學能的方法不同的地方在於前者提供了理解三項共存相相的背後物理機制‧此方法能夠產生相圖單相和混合相的區域而非僅止於相的邊界‧我們的方法所得到的共存相的區域和膠體實驗上量測到的結果非常吻合‧此外,文獻上有名的三相共存三角形區域其實是透過不同的共存相,在動態上的合併所得到的結果‧如果初始密度值落在此三角形區域中,系統會經過兩階段過程來達到三項共存平衡態‧落在三角區域中的各相(固、液、氣)總是落在三角形的頂點位置,但其所佔據的體積會因為初始密度不同而有所變化‧這個動態達到平衡的過程和近期文獻上巨分子-膠體的實驗所觀察到的結果非常一致‧如果實驗上可以將此巨分子-膠體系統換成盤狀粒子-膠體系統‧可驗證我們使用的理論和預測的結果是否正確‧
We draw attention to the free energy density minimization method as an insightful means to study the phase equilibrium behaviors of the platelet-colloid mixture. The basic idea of the method hinges on treating phases in coexistence as a composite free energy density which is defined by the sum of the free energy density of respective coexisting phases weighted by their respective volume proportions. To implement this method, the semi-grand canonical ensemble theory was first applied to construct a Helmholtz free energy function of a platelet-colloid mixture. Augmented by the free volume approximation and with the help of the scaled particle theory, we derived the free volume fraction that appears in the free energy function. Formulas of the Helmholtz free energy in liquid and solid phases are needed in effecting the free energy density minimization and these quantities are obtained in the context of the fundamental measure density functional theory. That the free energy density minimization method was preferred instead of the usual way of computing pressure and chemical potential is because of the insight it provides in understanding the origin of the triple coexistence. The method yields the phase-diagram domains (rather than the phase boundaries) of homogeneous single phases as well as their coexisting phases. For the coexistence domains, they are in the same pattern as one often encounters in colloidal laboratory experiments. Our calculated platelet-colloid phase diagram displays the well-known triangular area of gas-liquid-solid coexisting three phases, but it has to be realized as some kind of a kinetic phase transition coalescence of sets of two coexisting phases. A remarkable scenario in our phase-diagram domains is that, for any set of initial concentrations of colloids and platelets that fall inside this triangular area, the system proceeds in two stages to reach the triple coexisting phases. In this triangular domain, the three coexisting phases (gas, liquid and solid) always assume the vertices of the triangle, but depending on location of initial concentrations the spatial volume of each phase is different generally. This kinetic phase transition process is reminiscent of several recently reported experiments in polymer-colloid mixtures. It would thus be interesting if colloidal laboratory experiments at the same quantitative level as these reported papers for the colloid-polymer mixture can be carried out to confirm our theoretical predictions.
TABLE OF CONTENTS
I. Introduction
II. Theory
A. Free energy density minimization
B. Free energy density for fluid and solid phases
C. Scaled particle theory
D. Hard-sphere and solid phases: fundamental measure density functional theory
III. Results and discussion
A. Theoretical phase-diagram domains: infinitely thin platelet
B. Theoretical phase-diagram domains: finite thickness platelet
IV. Conclusion
Acknowledgment
References
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Figure Captions
REFERENCES
1 S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
2 Polymer chains are modeled as smaller size hard spheres by their behavior exhibting mutually self-avoiding and being excluded from the hard-sphere colloids.
3 S. Asakura and F. Oosawa, J. Polym. Sci. 33, 183 (1958).
4 A. Vrij, Pure Appl. Chem. 48, 471 (1976).
5 A.P. Gast, C.K. Hall, and W.B. Russel, J. Colloid Interface Sci. 96, 251 (1983).
6 F. Leal Calderon and J. Bibette, Europhys. Lett. 23, 653 (1993).
7 S.M. Ilett, A. Orrock, W.C.K. Poon and P.N. Pusey, Phys. Rev. E 51, 1344 (1995).
8 F. Renth, W.C.K. Poon, and R.M.L. Evans, Phys. Rev. E 64, 031402 (2001).
9 H.N.W. Lekkerkerker, W.C-K. Poon, P.N. Pusey, A. Stroobants, and P. B. Warren, Europhys. Lett. 20, 559 (1992).
10 H.N.W. Lekkerkerker and S.M. Oversteegen, J. Phys. Condens. Matter 14, 9317 (2002).
11 M. Fasolo and P. Sollich, J. Chem. Phys. 122, 074904 (2005); J. Phys. Condens. Matter 17, 797 (2005).
12 G.A. Vliegenthart and H. N. W. Lekkerkerker, J. Chem. Phys. 111, 4153 (1999).
13 G.A. Vliegenthart, A. van Blaaderen and H. N. W. Lekkerkerker, Faraday Discuss. 112, 173 (1999).
14 S.D. Zhang, P. Reynolds and J.S. van Duijneveldt, Mol. Phys. 100, 3041 (2002).
15 S.M. Oversteegen and H.N.W. Lekkerkerker, J. Chem. Phys. 120, 2470 (2004).
16 P.B. Warren, J. Phys. I (France) 4, 237 (1994).
17 G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004).
18 K.L. Wu and S.K. Lai, Colloids Surf. B: Biointerfaces 56, 290 (2007).
19 K,L, Wu, S.K. Lai and J.L. Bretonnet J. Non-Cryst. Solids 353, 3737 (2007).
20 Trinh Hao Lang, G.F. Wang and S.K. Lai, J. Chem. Phys. 132, 024910 (2010).
21 S.K. Lai and X.H. Xiao, J. Chem. Phys. 132, 044905 (2010).
22 V.B. Warshavsky and X. Song, Phys. Rev. E. 69, 06113 (2004).
23 S.M. Oversteegen and R. Roth, J. Chem. Phys. 122, 214502 (2005).
24 S.M. Oversteegen, C. Vonk, J.E.G.J. Wijnhoven and H.N.W. Lekkerkerker, Phys. Rev. E 71, 041406 (2005).
25 N. Doshi, G. Cinacchi, J.S. van Duijneveldt, T. Cosgrove, S.W. Prescott, I. Grillo, J. Phipps and D.I. Gittins, J. Phys.: Condens. Matter 23, 194109 (2011).
26 R. van Roij, M. Dijkstra, and J. P. Hansen, Phys. Rev. E 59, 2010 (1999).
27 H. N. W. Lekkerkerker, Colloids Surf. 51, 419 (1990).
28 L. Onsager, Ann. N. Y. Acad, Sci. 51, 627 (1949).
29 L. Onsager, Chem. Rev. 13, 73 (1933).
30 B. Widom, J. Chem. Phys. 39, 2808 (1963).
31 Considering the two coexisting phases alone, gas-solid or liquid-solid, their corresponding phase-separation points are stable since they fall on their biphasic boundaries. Note however that the free energy density of these binodals are different implying that nucleation in one of them will progress kinetically until three-phase coexistence is attained.
32 M.A. Faers and P.F. Luckham, Langmuir 13, 2922 (1997).
33 J. Zhou, J.S. van Duijneveldt and B. Vincent, Phys. Chem. Chem. Phys. 13, 110 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔