(34.204.191.31) 您好!臺灣時間:2019/10/20 16:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:施堡仁
研究生(外文):Bao-Jen Shih
論文名稱:以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究
論文名稱(外文):Analysis on diffraction efficiency of PQ:PMMA-based volume Bragg grating using detailed rate equations
指導教授:鍾德元
指導教授(外文):Te-Yuan Chung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:89
中文關鍵詞:體積布拉格光柵PQ:PMMA
外文關鍵詞:volume Bragg gratingPQ:PMMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:37
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用動態模型模擬感光高分子材料PQ:PMMA內的PQ與光產物分子在受到雙光束干涉曝光時的濃度分布變化,並使用傳遞矩陣(T-matrix)計算其濃度分布作為反射式布拉格光柵的繞射效率。實驗上使用雙光束干涉法(532 nm雷射光)寫入PQ:PMMA材料,製作出中心波長為1055 nm的反射式體積布拉格光柵。透過曝光時、曝光後的繞射效率數據獲取模擬參數,進而能夠利用模擬預測不同曝光方式下的最終繞射效率。另外,模擬預測了間段式曝光法可以得到更高的繞射效率,因此在實驗上使用間段式曝光法寫入PQ:PMMA材料,並得到了更高的繞射效率。
A simulated research based on rate equation was performed to analysis the concentration distributions of molecules in phenanthrenequinone (PQ)-doped PMMA polymer (PQ:PMMA) which was exposed by two beam interference configuration. The concentration distributions were used to predict the diffraction efficiency of PQ:PMMA based volume Bragg grating (VBG) by using transfer matrix method. The simulation result indicated that diffusion effect of PQ molecule was the most important factor that influences the final diffraction efficiency of PQ:PMMA VBG. The simulation result suggested that intermittent exposure method can promote the diffusion of PQ molecule and increase the final diffraction efficiency. A series of experiment validated that the diffraction efficiency of reflective type PQ:PMMA VBG can be predicted.
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 體積布拉格光柵 (volume Bragg grating) 5
2-1 基本原理 5
2-2 以T-matrix模擬繞射效率 8
2-3 以雙光束干涉法(two beam interference)製作VBG 12
第三章 感光高分子材料PQ:PMMA 14
3-1 引言 14
3-2 基本原理 15
3-2-1 聚合反應 15
3-2-2 光化學反應 17
3-3 PQ:PMMA之製備 19
第四章 PQ:PMMA之光化學反應模擬與分析 22
4-1 引言 22
4-2 動態模型 23
4-2-1 光化學反應式 23
4-2-2 反應速率式 24
4-3 數值模擬與分析方法 27
4-3-1 連續曝光時的濃度分布模擬 27
4-3-2 暗反應時的濃度分布模擬 29
4-3-3 傅氏級數振幅分析 30
4-3-4 濃度分布對折射率的影響 35
4-4 曝光參數變化對濃度振幅的影響 39
4-4-1 改變入射光強度 39
4-4-2 改變擴散係數 41
4-4-3 改變初始PQ濃度 43
4-4-4 改變中心波長 45
4-5 分析與討論 47
4-5-1 實際參數的選擇 47
第五章 實驗與模擬結果之分析與比較 49
5-1 實驗架構 49
5-2 實驗結果與參數分析 51
5-2-1 基本參數 51
5-2-2 改變入射光強度實驗 52
5-2-3 暗反應實驗 54
5-2-4 間段式曝光實驗 58
5-3 不同波長下的繞射效率 60
5-4 分析與討論 62
5-4-1 模擬成果 62
5-4-2 光致收縮的影響模擬 63
第六章 結論 65
第七章 參考文獻 67
第八章 附錄 69


1. G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166-176 (2005).
2. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, "Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters," Opt. Lett. 33, 566-568 (2008).
3. T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt Lett 31, 229-231 (2006).
4. 詹偉平, "以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究," (國立中央大學, 2010).
5. 杜隆琦, "以PQ:PMMA製作體積布拉格光柵回饋半導體雷射以達成波長可調之窄波長雷射輸出," (國立中央大學, 2014).
6. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell System Technical Journal 48, 2909-2947 (1969).
7. M. Born, and E. Wolf, Principles of optics; electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, 1969).
8. A. Yariv, and P. Yeh, Optical waves in crystals : propagation and control of laser radiation (Wiley, 1984).
9. 林俊華, "PQ/PMMA 感光高分子之體積全像特性分析與改進," (國立交通大學, 2012).
10. S. H. Lin, S. L. Cho, J. H. Lin, K. Y. Hsu, and S. Chi, "Influence of fabrication conditions on characteristics of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for holographic memory," Opt Commun 320, 145-150 (2014).
11. Y.-N. Hsiao, W.-T. Whang, and S. H. Lin, "Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials," Opt. Eng. 43, 1993-2002 (2004).
12. Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, "Study of PQ/PMMA photopolymer. Part 2: experimental results," J. Opt. Soc. Am. B 30, 3308-3315 (2013).
13. S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, "Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material," J. Opt. Soc. Am. B 28, 2833-2843 (2011).
14. M. R. Gleeson, and J. T. Sheridan, "Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling," J. Opt. Soc. Am. B 26, 1736-1745 (2009).
15. Z. Wei, D. Yu, X. Li, Y. Wang, Z. Chen, Y. Geng, and J. Lv, "Shrinkage Simulation of Holographic Grating Using Diffusion Model in PQ-PMMA Photopolymer," MATEC Web of Conferences 25, 6 (2015).
16. D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, "Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay," Opt Commun 330, 199-207 (2014).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔