(3.231.229.89) 您好!臺灣時間:2019/12/15 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:曹森霖
研究生(外文):Sen-Lin Tsao
論文名稱:利用火花電漿燒結製備鋁摻雜矽塊材之熱電性質研究
論文名稱(外文):The study of thermoelectric properties for the aluminum doped silicon by Spark Plasma Sintering
指導教授:李勝偉
指導教授(外文):Sheng-Wei Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:火花電漿燒結熱電性質
外文關鍵詞:SiliconAluminumSpark Plasma Sinteringthermoelectric properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
矽塊材在室溫下是高熱導率的材料,約150W/m*K,也因此純矽塊材為不良的熱電材料。為了提升熱電性質,球磨並添加摻雜元素是常見的方法,利用界面散射使熱導率下降,以摻雜提升電導率。
本研究將矽顆粒和不同比例的鋁顆粒一起球磨,研磨24小時後利用火花電漿燒結成塊材,燒結時最高溫度約1000°C,低於矽燒結時常使用的溫度,藉鋁熔化後幫助顆粒之間的連接和提升矽的結晶性而可以讓燒結溫度降低到1000°C。燒結後的塊材進行熱電性質量測,溫度範圍為室溫至450°C,得知當鋁添加量是5at%以上時,導電率明顯提升,顯示添加5at%以上的鋁有顯著的摻雜效果,並得知添加5at%鋁有最好的熱電性質。
The thermal conductivity of bulk silicon is 150 W/m*K at room temperature. It is considered as poor thermoelectric materials. Ball milling with doping is a common method for enhancing thermoelectric efficient.
In our study, silicon and aluminum particles were milled in a ball mill bar with different ratio for 24 hours. After milling, the milled particles were fabricated into bulk samples via spark plasma sintering. The sintering temperature was 1000°C, which was lower than that often used in the sintering of silicon. The reason for the lower sintering temperature is that the molten aluminum can help the connection of silicon particles and enhance the crystallinity. After sintering, we measured the thermoelectric properties of bulk sintered sample from room temperature to 450°C. We found that the electrical conductivity was significantly improved when the aluminum exceeds 5at%. The result shows that addition of more than 5at% aluminum has significant doping effect and we found that the sintered bulk sample has the improved thermoelectric properties with the addition of aluminum of 5at%.
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 - 1 -
1.1研究動機 - 1 -
1.2文獻回顧 - 2 -
1.2.1熱電效應 - 2 -
1.2.2 席貝克效應 - 3 -
1.2.3帕爾帖效應 - 3 -
1.2.4 湯姆森效應 - 4 -
1.2.5導電率 - 4 -
1.2.6熱導率 - 5 -
1.2.7 威德曼-弗朗茲定律(Wiedemann-Franz law) - 6 -
1.2.8 矽基熱電材料 - 7 -
1.2.9鋁、矽性質介紹 - 8 -
第二章 實驗流程與儀器 - 14 -
2.1實驗流程 - 14 -
2.2實驗步驟描述 - 15 -
2.3實驗藥品 - 16 -
2.4實驗儀器 - 16 -
2.4.1行星式研磨機 - 16 -
2.4.2慢速精密切割機(Low Speed Sow) - 17 -
2.4.3火花電漿燒結(Spark Plasma Sintering, SPS) - 17 -
2.4.4雷射閃光法熱傳導分析儀(Laser Flash Analysis, LFA ) - 17 -
2.4.5示差掃描熱分析儀(Differential scanning calorimetry, DSC) - 18 -
2.4.6阿基米德法密度量測裝置 - 19 -
2.4.7掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) - 19 -
2.4.8 X光粉末繞射儀 (X-Ray Diffraction, XRD) - 20 -
2.4.9顯微拉曼光譜儀 (Micro-Raman Spectrometer) - 20 -
2.4.10霍爾效應量測 (Hall Effect Measurement) - 21 -
2.4.11 ZEM 3 - 21 -
2.4.12 油壓機 - 22 -
第三章 實驗結果與討論 - 30 -
3.1 前言 - 30 -
3.2材料基本性質分析 - 30 -
3.2.1 SEM分析 - 30 -
3.2.2 XRD分析 - 32 -
3.2.3 Raman光譜分析 - 34 -
3.2.4 TEM分析 - 36 -
3.3 熱電性質分析 - 36 -
3.3.1 導電率 - 36 -
3.3.2席貝克係數 - 37 -
3.3.3功率因子 - 37 -
3.3.4 熱導率 - 38 -
3.3.5 ZT值 - 38 -
3.4結論 - 39 -
第四章 未來展望 - 52 -
參考文獻 - 53 -
[1] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature materials 7.2, 105-114, 2008.
[2] X. F. Zheng, C. X. Liu, Y. Y. Yan and Q. Wang, "A review of thermoelectrics research–Recent developments and potentials for sustainable and renewable energy applications," Renewable and Sustainable Energy Reviews 32, 486-503, 2014.
[3] M. H. Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassan, M. B. A. Bashir and M. Mohamad, "A review on thermoelectric renewable energy: Principle parameters that affect their performance." Renewable and Sustainable Energy Reviews 30, 337-355, 2014.
[4] T. M. Tritt, "Thermoelectric phenomena, materials, and applications." Annual review of materials research 41, 433-448, 2011.
[5] H. J. Goldsmid, and R. W. Douglas, "The use of semiconductors in thermoelectric refrigeration," British Journal of Applied Physics 5.11, 386, 1954.
[6] D. M. Rowe (Ed.), Thermoelectrics handbook: macro to nano. CRC press, 2005.
[7] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang and R. Zhifeng, J. P. Fleurial, P. Gogna, "New Directions for Low‐Dimensional Thermoelectric Materials," Advanced Materials 19.8, 1043-1053, 2007.
[8] Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao and T. M. Tritt, "High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials," Applied Physics Letters 93.10, 102109, 2008.
[9] S. Battiston, S. Fiameni, M. Saleemi, S. Boldrini, A. Famengo, F. Agresti, M. Stingaciu, M. S. Toprak, M. Fabrizio and S. Barison, "Synthesis and characterization of Al-Doped Mg2Si thermoelectric materials," Journal of electronic materials 42.7, 1956-1959, 2013.
[10] M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai and N. Hamada, "The thermoelectric properties of bulk crystalline n-and p-type Mg2Si prepared by the vertical Bridgman method," Journal of Applied Physics, 104.1, 013703, 2008.
[11] J. I. Tani and H. Kido, "Thermoelectric properties of Bi-doped Mg2Si semiconductors," Physica B: Condensed Matter 364.1, 218-224, 2005.
[12] Tani, Jun-ichi, and Hiroyasu Kido, "Thermoelectric properties of Sb-doped Mg2Si semiconductors." Intermetallics 15.9 (2007): 1202-1207.
[13] W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang and C. Uher, "Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi," Intermetallics 19.3, 404-408, 2011.
[14] W. Luo, H. Li, F. Fu, W. Hao, and X. Tang, "Improved thermoelectric properties of Al-doped higher manganese silicide prepared by a rapid solidification method," Journal of electronic materials 40.5, 1233-1237, 2011.
[15] T. Itoh, and M. Yamada, "Synthesis of thermoelectric manganese silicide by mechanical alloying and pulse discharge sintering," Journal of electronic materials 38.7, 925-929, 2009.
[16] S. Karuppaiah, M. Beaudhuin and R. Viennois, "Investigation on the thermoelectric properties of nanostructured Cr1− xTixSi2." Journal of Solid State Chemistry 199,90-95, 2013.
[17] T. Dasgupta and A. M. Umarji,"Role of milling parameters and impurity on the thermoelectric properties of mechanically alloyed chromium silicide," Journal of Alloys and Compounds 461.1, 292-297, 2008.
[18] S. W. Kim, M. K. Cho, Y. Mishima and D. C. Choi, "High temperature thermoelectric properties of p- and n-type β-FeSi2 with some dopants," Intermetallics 11.5, 399-405, 2003.
[19] A. Heinrich, H. Griessmann, G. Behr, K. Ivanenko, J. Schumann and H. Vinzelberg, "Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi 2+ x thin films," Thin Solid Films 381.2, 287-295, 2001.
[20] X. B. Zhao, T. J. Zhu, S. H. Hu, B. C. Zhou and Z. T. Wu, "Transport properties of rapid solidified Fe–Si–Mn–Cu thermoelectric alloys," Journal of Alloys and compounds 306.1, 303-306, 2000,.
[21] S. Kasap and P. Capper (Eds.) Springer handbook of electronic and photonic materials. Springer Science & Business Media, 2007.
[22] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, and M. S. Dresselhaus, R. B. Kaner, J. P. Fleurial, "Nanostructured bulk silicon as an effective thermoelectric material," Advanced Functional Materials 19.15, 2445-2452, 2009.
[23] B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus and Z. Ren, "Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites," Nano letters 12.4, 2077-2082, 2012.
[24] Z. Zamanipour and D. Vashaee, "Comparison of thermoelectric properties of p-type nanostructured bulk Si0.8Ge0.2 alloy with Si0.8Ge0.2 composites embedded with CrSi2 nano-inclusisons," Journal of Applied Physics 112.9, 093714, 2012.
[25] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A.J Muto, M.Y Tang, J. Klatsky, M.S Dresselhaus, G. Chen, Z. F. Ren and S. Song, "Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy," Applied Physics Letters 93.19, 193121, 2008.
[26] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, M.S Dresselhaus, Z. F. Ren, R.W. Gould, D. C. Cuff and G. Chen, "Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys," Nano letters 8.12, 4670-4674, 2008.
[27] R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, , S. Ahmad, , A. Singh, M. Navaneethan, Y. Hayakawa, D. K. Aswal and S. K. Gupta, "Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys," Journal of Materials Chemistry A 2.19, 6922-6930, 2014.
[28] S. Bathula, M. Jayasimhadri, N. Singh, A. K. Srivastava, J. Pulikkotil, A. Dhar and R. C. Budhani, "Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys," Applied Physics Letters101.21, 213902, 2012.
[29] A. Usenko, D. Moskovskikh, M. Gorshenkov, A. Voronin, A. Stepashkin, S. Kaloshkin, D. Arkhipov and V. Khovaylo, "Enhanced thermoelectric figure of merit of p-type Si0.8Ge0.2 nanostructured spark plasma sintered alloys with embedded SiO 2 nanoinclusions," Scripta Materialia 127, 63-67, 2017.
[30] S. P. Ashby, T. Bian, H. Ning, M. J. Reece and Y. Chao, "Thermal Diffusivity of SPS Pressed Silicon Powders and the Potential for Using Bottom–Up Silicon Quantum Dots as a Starting Material," Journal of Electronic Materials 44.6, 1931-1935, 2015.
[31] S. Bathula, B. Gahtori, M. Jayasimhadri, S. K. Tripathy, K. Tyagi, A. K. Srivastava and A. Dhar, "Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering," Applied Physics Letters 105.6, 061902, 2014.
[32] Yusufu, Aikebaier, et al. "Bottom-up nanostructured bulk silicon: a practical high-efficiency thermoelectric material," Nanoscale 6.22, 13921-13927, 2014.
[33] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature 451.7175, 163-167,2008.
[34] A. I. Boukai, Y.Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard Iii and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451.7175, 168-171, 2008.
[35] J. Tang, H. T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell and Yang, P. "Holey silicon as an efficient thermoelectric material," Nano letters 10.10, 4279-4283, 2010.
[36] P. B. Ghate, "Aluminum alloy metallization for integrated circuits," Thin Solid Films 83.2, 195-205, 1981.
[37] J. H. Kim and J. Y. Lee, "Al-induced crystallization of an amorphous Si thin film in a polycrystalline Al/native SiO2/amorphous Si structure," Japanese journal of applied physics 35.4R, 2052, 1996.
[38] Y. Sugimoto, N. Takata, T. Hirota, K. I. Ikeda, F. Yoshida, H. Nakashima and H. Nakashima, "Low-temperature fabrication of polycrystalline Si thin film using Al-induced crystallization without native Al oxide at amorphous Si/Al interface," Japanese journal of applied physics 44.7R (2005): 4770.
[39] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa and E. Saitoh, "Observation of the spin Seebeck effect," Nature 455.7214, 778-781, 2008.
[40] J. L. Murray and A. J. McAlister, "The Al-Si (aluminum-silicon) system," Bulletin of alloy phase diagrams 5.1, 74-84, 1984.
[41] 周雅文,“火花電漿燒結技術於熱電材料開發之應用”,工業材料雜誌287期,工業技術研究院 材料與化工研究所,2011年11月。
[42] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature 121, 501-502,1928.
[43] W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton and A. N. Hulme, "Stimulated Raman scattering microscopy: an emerging tool for drug discovery," Chemical Society Reviews 45.8, 2075-2089, 2016.
[44] J. E. Hirsch, "Spin hall effect," Physical Review Letters 83.9, 1834, 1999.
[45] M. Ramezani and T. Neitzert. "Mechanical milling of aluminum powder using planetary ball milling process," JAMME 55.2, 790-798, 2012.
[46] T. D. Shen, C. C. Koch, T. L. McCormick, R. J. Nemanich, J. Y. Huang, and J. G. Huang, "The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling," Journal of materials research 10.01, 139-148, 1995.
[47] A. K. Zak, W. A. Majid, M. E. Abrishami, and R. Yousefi, "X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods," Solid State Sciences 13.1, 251-256, 2011.
[48] P. Unifantowicz, S. Vaucher, M. Lewandowska and K. J. Kurzydłowski, "Structural changes of silicon upon high-energy milling investigated by Raman spectroscopy," Journal of Physics: Condensed Matter20.2, 025205, 2007.
[49] T. Lopez-Rios, C. Pettenkofer, I. Pockrand, and A. Otto, "Enhanced Raman scattering from aluminum films," Surface Science 121.1,L541-L544, 1982.
[50] K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. E. Palanco, H. Kneipp and K. Kneipp, "Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation," Chemical Communications 50.28, 3744-3746, 2014.
[51] C. Suryanarayana, "Mechanical alloying and milling," Progress in materials science 46.1, 1-184, 2001.
[52] J. R. Szczech, J. M. Higgins, and S. Jin, "Enhancement of the thermoelectric properties in nanoscale and nanostructured materials," Journal of Materials Chemistry 21.12, 4037-4055, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔