(3.94.202.88) 您好!臺灣時間:2019/10/14 16:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:曾文妮
研究生(外文):Wen-Ni Tseng
論文名稱:土壤無機相結構對揮發性有機污染物吸∕脫附行為之影響
論文名稱(外文):The effect of soil mineral structure on the adsorption/desorption of volatile organic compounds
指導教授:李俊福李俊福引用關係
指導教授(外文):Jiunn-Fwu Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:87
中文關鍵詞:蒙特石結構揮發性有機化合物等溫吸∕脫附曲線遲滯現象
外文關鍵詞:montmorillniteporous structureadsorption/desorption isotherm
相關次數:
  • 被引用被引用:13
  • 點閱點閱:210
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
土壤對有機污染物的吸持作用,包括無機相的吸附及有機相的兩相分佈。探究吸∕脫附機制的困難在於環境基質的複雜性,所以本研究摒除水分的干擾,針對土壤無機相的構造與其吸附作用進行探討。
實驗係透過量測BET表面積、孔洞體積、孔洞大小、孔徑分布、晶格間距及推測孔洞連結,並配合電子顯微鏡之表面影像而得土樣基本結構參數;再使用Cahn D-200電動天平並控制溫度,測量苯及正己烷在鈣─蒙特石與鈦─蒙特石上之等溫吸∕脫附曲線。
結果顯示,鈣─蒙特石經由過渡金屬鈦離子取代後,表面積、孔洞體積及平均孔徑均增加、孔徑分布趨向不均勻化、晶格C層間距改變且氣態吸∕脫附曲線不具遲滯迴圈,顯示了蒙特石的結構發生改變,也使得孔洞連結度變得更佳。鈦─蒙特石提供較多吸附位置,又無立體阻礙,所以在達單層飽和吸附量時,其吸附平衡所需的時間均較鈣─蒙特石為快,單層吸附量也較高,且等溫吸∕脫附曲線沒有迴圈,無遲滯現象。實驗所得之吸附熱則受到吸附劑的孔洞及氣體分子在孔洞內之排列影響,對於孔徑體積較小的鈣─蒙特石,其吸附熱須考量吸附劑與吸附質間的作用以及吸附分子間之作用力。
The objective of this research is to evaluate the effect of soil structure on the adsorption/desorption of volatile organic compounds (VOCs). The migration and the fate of nonionic organic pollutants in soils are highly depended on their vapor-phase sorptive behavior. However, it is difficult to explicit the mechanism of adsorption/desorption due to complexity of environmental medium. In order to show the effects of soil structure on adsorption/desorption of VOCs, two kinds of montmorillnite with different exchange cation, calcium and titanium were individually used to examine the isotherms for the vapor uptake of benzene and n-hexane under 288K and 298 K.
After exchanged with metal cation, the porous structure of the mineral samples was changed. These changes were explored by quantifying the BET surface area, total pore volume, micropore volume, pore size distribution, surface fractal dimension (calculated from N2 adsorption/desorption isotherms), c-spacing (by XRD) and surface image (by SEM) of mineral phase. The results demonstrate that Ti-montmorillnite has higher surface area, extensive pore size distribution, and better pore connection.
The influences of temperature and soil properties were also investigated. A gravimetric adsorption apparatus was developed and used to generate adsorption/desorption isotherms of benzene and hexane on two dry soil samples at 288 and 298 K. Isosteric heats of adsorption were calculated and heat curves were established. Equilibrium isotherms were all Type II, characterizing vapor condensation to form multilayers. The sorption capacity of soils is positively correlated with specific surface area, pore size distribution and pore connection. Nevertheless, Ti-montmorillnite didn’t reveal hysteresis loop, which might be attributed to better pore size distribution and pore connection. Isosteric heats of adsorption on Ca-montmorillnite were influenced by the reaction between adsorbent and adsorbate as well as among adsorbate molecules.
The results of this study are to further understanding of soil properties, as a basis for desorption predictions. Findings, apply not only to environment applications but also to theoretical development.
目錄…………………………………………………..I
圖目錄…………………………………………………….V
表目錄………………………………………………….VII
1第一章 前言8
1-1研究緣起8
1-2研究流程11
1-3研究目的與內容13
2第二章 文獻回顧15
2-1吸附理論15
2-2影響土壤吸附VOCs的因子17
2-2-1黏土礦物的差異18
2-2-2不同VOCs 的影響20
2-2-3水份之影響21
2-2-4土壤有機質的影響23
2-2-5溫度的影響23
2-3氣態等溫吸附線24
2-4土壤吸附氣態有機污染物之相關文獻28
2-5土壤無機相之組成30
2-5-1矽酸鹽礦物31
2-5-2交換性陽離子32
2-5-3蒙特石簡介33
2-6碎形幾何簡介34
2-6-1碎形理論35
2-6-2碎形理論與土壤無機相結構35
3第三章 實驗設備、材料與方法37
3-1實驗內容37
3-2實驗設備39
3-2-1氮氣吸附孔隙儀(ASAP)39
3-2-2X光繞射儀(XRD)42
3-2-3場放射掃描式電子顯微鏡(SEM+EDS)43
3-2-4微量電子天平44
3-2-5恆溫水浴槽45
3-2-6真空抽氣機45
3-2-7真空冷凍乾燥機45
3-3實驗材料46
3-3-1吸附劑46
3-3-2吸附質49
3-4實驗內容52
3-4-1實驗設備配置52
3-4-2實驗步驟55
4第四章 結果與討論59
4-1土壤基本性質59
4-1-1氮氣吸∕脫附曲線60
4-1-2X-ray繞射圖譜68
4-1-3掃描式電子顯微鏡70
4-2苯及正己烷之等溫吸∕脫附實驗71
4-2-115℃及25℃等溫吸∕脫附實驗71
4-2-2等溫吸∕脫附實驗之比較76
4-3吸附熱78
4-4等溫吸∕脫附動力曲線83
5第五章 結論與建議85
5-1結論85
5-2建議86
6參考文獻 88
圖 目 錄
目次 頁次
圖 1.1 研究流程11
圖 2.1 等溫吸附線之基本形態25
圖 3.1 蒙特石之構造47
圖 3.2 苯分子之結構49
圖 3.3 正己烷分子之結構50
圖 3.4 實驗設備及配置53
圖 3.5 實驗裝置54
圖 3.6 實驗流程56
圖 4.1 氮氣吸附等溫線60
圖 4.2 孔徑分布圖(PSD)62
圖 4.3 氮氣吸∕脫附曲線64
圖 4.4 實驗數據和碎形FHH方程式之擬合67
圖 4.5 XRD繞射圖譜69
圖 4.6 土樣之表面影像(放大2萬倍)70
圖 4.7 15℃及25℃之等溫吸附曲線72
圖 4.8 15℃之等溫吸∕脫附曲線74
圖 4.9 25℃之等溫吸∕脫附曲線75
圖 4.10 苯在鈣─蒙特石15℃及25℃的吸附曲線78
圖 4.11 苯在鈣─蒙特石上的等容吸附熱79
圖 4.12 蒙特石吸附苯及正己烷的吸附反應熱81
表 目 錄
目次 頁次
表 31 非離子性有機化合物基本性質表51
表 32 各文獻之系統操作參數55
表 41 鈣─蒙特石與鈦─蒙特石基本性質比較表63
表 42 土樣表面結構參數67
表 43 BET法求得之吸附係數(C)與單層飽和吸附量77
(1)Hileman, B., “Research targets hazardous waste,” Chem. Eng. News, 77, 24-25, 1999.
(2)Batterman, S., Kulshrestha, A., and Chang, H., “Hydrocarbon vapor transport in low moisture soils,” Environ. Sci. Technol., 29, 171-180, 1995.
(3)Chiou, C. T., Porter, P. E., and Schmedding, D. W., “A physical concept of soil-water equilibria for nonionic organic compounds,” Science, 206, 831-832, 1979.
(4)Weissmahr, K. W., Haderlein, S. B., and Schwarzenbach, R. P., “In situ spectroscopic investigations of adsorption mechanism of nitro aromatic compounds at clay minerals,” Environ. Sci. Technol., 31, 240-247, 1997.
(5)Doner, H. E., and Mortland, M. M., “Benzene complexes with Cu (II) montmorillonite,” Science, 166, 1406-1407, 1969.
(6)Mader, B. T., Goss, K. U., and Eisenreich, S. J., “Sorption of nonionic hydrophobic organic chemicals to mineral surface,” Environ. Sci. Technol., 31, 1079-1086, 1997.
(7)Weidenhaupt, A., Arnold, C., Muller, S. R., Haderlein, S. B., and Schwarzenbach, R. P., “Sorption of organic biocides to mineral surface,” Environ. Sci. Technol., 31, 2603-2609, 1997.
(8)王一雄、陳尊賢、李達源,“土壤污染學”,國立空中大學,台北,民國八十六年。 【ISBN: 957-661-091-5】
(9)Cseri, T., Békássy, S., Figueras, F., and Rizner, S., “Benzylation of aromatics on ion-exchanged clays,” J. Mol. Catal. A-Chem., 98, 101-107, 1995.
(10)Maes, N., Heylen, I., Cool, P., and Vansant, E. F., “The relation between the synthesis of pillared clays and their resulting porosity,” Appl. Clay Sci., 12, 43-60, 1997.
(11)Goss, K. U., “Effects of temperature and relation humidity on the sorption of organic vapors on clay minerals,” Environ. Sci. Technol., 27, 2127-2132, 1993.
(12)Ruiz, J., Bilbao, R., and Murillo, M. B., “Adsorption of different VOC onto soil minerals from gas phase: influence of mineral, type of VOC, and air humidity,” Environ. Sci. Technol., 32, 1079-1084, 1998.
(13)Goss, K. U., and Eisenreich, S. J., “Adsorption of VOCs from the gas phase to different minerals and a mineral mixture,” Environ. Sci. Technol., 30, 2135-2142, 1996.
(14)Lee, J. F., Lee, C. K., and Juang, L. C., “Size effects of exchange cation on the pore structure and surface fractality of montmorillonite,” J. Colloid Interf. Sci., 217, 172-176, 1999.
(15)Goss, K. U., “Effects of temperature and relation humidity on the sorption of organic vapors on quartz sand,” Environ. Sci. Technol., 26, 2287-2294, 1992.
(16)Chiou, C. T., and Shoup, T. D., “Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity,” Environ. Sci. Technol., 19, 1196-1200, 1985.
(17)Goss, K. U., and Eisenreich, S. J., “Sorption of volatile organic compounds to particles from a combustion source at different temperatures and relation humidity,” Environ. Sci. Technol., 31, 2827-2832, 1997.
(18)Steinberg, S. M., Schmeltzer, J. S., and Kreamer, D. K., “Sorption of benzene and trichloroethylene on a desert soil: Effects of moisture and organic matter,” Chemosphere, 33, 961-980, 1996.
(19)Ong, S. K., and Lion, L. W., “Effects of soil properties and moisture on the sorption of trichloroethylene vapor,” Water Res., 26, 287-2294, 1992.
(20)Jury, W. A., Spencer, W. F., and Farmer, W. J., “Behavior assessment model for trace organic in soil, 1. Model description,” J. Environ. Qual., 12, 558-564, 1983.
(21)Chiou, C. T., Porter, P. E., and Schmedding, D. D. W., “Partition equilibrium of nonionic organic compounds between soil organic matter and water,” Environ. Sci. Technol., 17, 227-231, 1983.
(22)Chiou, C. T., Shoup, T. D., and Porter, P. E., “Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solution,” Org. Geochem., 8, 9-14, 1985.
(23)Chiou, C. T., Kile, D. E., and Malcolm, R. L., “Sorption of vapors of some organic liquids on soil humic acid and its relation to partition of organic compounds in soil organic matter,” Environ. Sci. Technol., 22, 298-303, 1988.
(24)Ong, S. K., and Lion, L. W., “Mechanisms for trichloroethylene vapor sorption onto soil minerals,” J. Environ. Qual., 20, 180-188, 1991.
(25)Ong, S. K., and Lion, L. W., “Trichloroethylene vapor sorption onto soil minerals,” Soil Sci. Soc. Am. J., 55, 1559-1568, 1991.
(26)Schnitzer, M., and Kodama, H., “Interactions between organic and inorganic components in particle-size fractions separated from four soils,” Soil. Sci. Soc. Am. J., 56, 1099-1105, 1992.
(27)Tate III, R. L., “Soil organic matter,” John Wiley & Sons, Inc., New York, 1987.
(28)Chiou, C. T., Lee, J. F., and Boyd, S.A., “The surface area of soil organic matter," Environ. Sci. Technol., 24, 1164-1166, 1990.
(29)Rutherford, D. W., and Chiou, C. T., “Effect of water saturation in soil organic matter on the partition of organic compounds,” Environ. Sci. Technol., 26, 965-970, 1992.
(30)Grathwohl, P., “Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations,” Environ. Sci. Technol., 24, 1687-1693, 1990.
(31)Weber, W. Jr., Mcginley, P. M., and Katz, L. E., “A distributed reactivity model for sorption by soils and sediments,” Environ. Sci. Technol., 26, 1955-1962, 1992.
(32)Dural, N. H., and Chen, C. H., “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils,” J. of Hazard. Mater., 53, 75-92, 1997.
(33)Thlbaud, C., Erkey, C., and Akgerman, A., “Investigation of adsorption equilibria of volatile organics on soil by frontal analysis chromatography,” Environ. Sci. Technol., 26, 1159-1164, 1992.
(34)Campagnolo, J. F., Akgerman, A., “A prediction method for gas-phase VOC Isotherms onto soils and soil constituents,” J. Hazard. Mater., 49, 231-245, 1996.
(35)Johnston C. T., Tipton, T., Trabus, S. L., Erickson, C., and Stone, D. A., “Vapor-phase sorption of p-xylene on Co- and Cu-exchanded Saz-1 montmorillonite,” Environ. Sci. Technol., 26, 382-390, 1992.
(36)Lin, T. F., “Diffusion and sorption of water vapor and benzene within a dry model soil organic matter,” Water Sci. Technol., 35, 131-138,1997.
(37)張美玲,“揮發性有機物氣體在土壤中之吸脫附動力”,博士論文,國立台灣大學環境工程研究所,台北,民國八十七年。
(38)倪雅惠,“揮發性有機物污染土壤復育工程中之吸附行為─各種土壤成份對吸附之貢獻”,碩士論文,國立台灣大學環境工程研究所,台北,民國八十七年。
(39)陳佩貞,“揮發性有機物於土壤中慢吸脫附行為之探討─不同黏土礦物的影響”,碩士論文,國立台灣大學環境工程研究所,台北,民國八十八年。
(40)Soma, Y., Soma, M., and Harada, I., “The reaction of aromatic molecules in the interlayer of transition-metal ion-exchanged montmorillonites studied by resonance Ramam spectroscopy,” J. Phys. Chem. A, 88, pp. 3034-3038, 1984.
(41)林百顯,“不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究”,碩士論文,國立中央大學環境工程研究所,中壢,民國八十九年。
(42)薛敬和、林敬二等人,“化學大辭典”,高力圖書有限公司,台北,民國八十二年。 【ISBN: 9575840887】
(43)Chiou, C. T., Rutherford, D. W., and Manes, M., “Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data,” Environ. Sci. Technol., 27, 1567-1574, 1993.
(44)Chiou, C. T., and Kile, D. E., “Effect of polar and nonpolar groups on the solubility of organic compounds in soil organic matter,” Environ. Sci. Technol., 28, 1139-1144, 1994.
(45)Brunauer, S. L., Deming, S., Deming, W. S., and Teller, E., “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc., 60, 309-319, 1938.
(46)Gregg, S. J., and Sing, K. S. W., “Adsorption, surface area and porosity,” Academic Press Inc., London, 1982. 【ISBN: 0123009561】
(47)Pignatello, J. J., and Xing, B., “Mehanisms of slow sorption of organic chemicals to natural particles,” Environ. Sci. Technol., 30, 1-11, 1996.
(48)Cornelissen, G., van Noort, P. C. M., Parsons, J. R., and Govers, H. A. J., “Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments,” Environ. Sci. Technol., 31, 454-460, 1997.
(49)Rounds, S. A., Tiffany, B. A., and Pankow, J. F., “Description of gas/particle sorption kinetics with an intraparticle diffusion model: description experiments,” Environ. Sci. Technol., 27, 366-377, 1993.
(50)Adamson, A. W., and Gast, A. P., “Physical chemistry of surface,” 6th Ed., John Wiley & Sons, Inc., New York, 1997. 【ISBN: 0471148733】
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔