(18.207.240.230) 您好!臺灣時間:2020/07/09 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:朱志昇
研究生(外文):Chih-Sheng Chu
論文名稱:光波導耦合表面電漿子之電光調變器
論文名稱(外文):Electro-Optic Light Modulators Based on Waveguide-Coupled Surface Plasmon Resonance
指導教授:陳顯禎
指導教授(外文):Shean-Jen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:107
中文關鍵詞:調變器表面電漿波
外文關鍵詞:modulatorsurface plasmon resonance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在Tera-Hz光通訊領域中,一個極高頻且超高效率之光調變器(light modulator),是不可或缺的關鍵元件,本論文提出一具有此特性之光調變器─利用波導耦合(waveguide-coupled)入射光,形成一Fabry-Perot建設性干涉能量集中之表面電漿子(surface plasmons,SPs)激發光,經由外加電場調變激發光與表面電漿子之間的耦合程度,進而達成調變反射光強度的目的。因此,依據上述理論設計,我們製作出此經由衰逝全反射(attenuated total reflection,ATR) 方式調變之光波導耦合表面電漿子(waveguide-coupled surface plasmon,WCSP)光調變器,於波導耦合介電層下濺鍍一特定厚度金屬層約30∼40 nm,於此金屬層下方再旋轉塗佈一層有機電光(electro-optic,E-O)高分子材料,並將此高分子層極化(poling)排列為非中心對稱結構,使得此電光高分子層結構可經由外加電場來調變而造成一階Pockels電光效應,此時波導耦合入射光與表面電漿子之耦合關係發生瞬間的大改變進而使反射光的強度產生極大的變化而達到高效率光調變的目的。
結合上述光波導耦合能量集中、衰逝全反射表面電漿子耦合以及電光高分子之電光效應等,再加上相關理論分析與多層膜反射方程式模擬比較,提出超高效率光波導耦合表面電漿子之電光調變器之最佳化設計製作準則。首先,利用Lorentzian方程式,多層膜反射式及最佳化線性資料分析(optimal linear data analysis)來對衰逝全反射的反射光譜(reflectivity spectrum)分析,可求出經由RF濺鍍之金屬層的介電常數(dielectric constant)及厚度。並利用反射光譜中的兩個波導耦合模態,而求出經由旋轉塗佈極化後之電光高分子層的折射係數(refractive index)及厚度,並配合反射光譜之最低強度(minimum intensity),可估算其消散係數(extinction coefficient)。配合電光高分子層的一階電光效應及對量測反射光譜浮移量做分析,即可計算出此電光高分子材料的電光係數(E-O coefficient)。然而,目前所製作之電光調變器並非於最佳化的狀態,因此於30 V外加電壓時,調變光強只達1%左右,而與最佳化設計時4%的調變量還有一段距離仍待努力。
最後,我們設計一嶄新極高效率之長距離表面電漿波(long-range surface plasmon wave,LRSPW)與傳統表面電漿波(surface plasmon wave,SPW)耦合的光調變器,由於表面電漿波的激發導致入射光的能量更加集中於波導層內部,調變效率也將因此而大幅提升。採用此種方式做調變,依據模擬的結果顯示,在10V的外加電壓下將能有70%的極高效率調變量。
Due to the increasing demand for the development of light modulator with larger bandwidth and higher efficiency in the optical communication, in this thesis we present a novel ultrahigh efficiency and high dynamic response light modulator based on an external applied voltage to modulate the excitation degree of incident waveguide light in surface plasmons (SPs), known as the attenuation total reflection method (ATR method). This waveguide-coupled surface plasmon light modulator is fabricated by spin coating an organic electro-optic (E-O) polymer film onto the metal layer with suitable thickness of 30~40 nm, and then deposited a bottom metal electrode under the polymer. The molecular orientation of E-O polymer is aligned into noncentro-symmetry structure by applying contact poling process. When an external applied electric field created a linear variation of refractive index of poled E-O polymer according to the Pockels effect, the excitation degree of incident waveguide light in surface plasmons is changed and then the reflected light is modulated.
Besides, we present in the thesis an optimizing design principle for efficient light modulator through the concentration of engery by waveguide coupled, surface plasmons, electro-optic effect, simulation, and theory analysis. To accurately determine the reflective index, attenuation coefficient, and the thickness of the metal layer, we analyzed the ATR spectra by techniques including Lorentzian equation analysis, Fresnel’s equation data-fitting and optimal linear data analysis. Alternatively, by using least square data-fitting techniques which employ two waveguide mode, we could calculate the refractive index and thickness of electro-optic polymer. We also estimated the attenuation coefficient of the polymer by anaylzing the reflection minimum of ATR spectrum. Finally, we calculated its actual electro-optic coefficient of this modulator by analyzing both E-O pockels effect and ATR spectrum. However, because the modulator fabricated in our experiment is not on optimum condition, the results so far show only 1% modulation in the intensity of the reflected light with driving voltage 30V.
Finally, we present a novel and high efficiency electro-optic light modulators based on long range surface plasmon wave coupled with classical surface plasmon wave. Due to the excitation of surface plasmon wave, the energy is concentrated in the waveguide, so the efficiency could be improved. By simulation, it could effectively reduce driving voltage and increase the modulation index of 70 % with driving voltage 10 V.
第一章 緒 論1
1-1前言1
1-2 研究動機與目的2
1-3 文獻回顧3
1-4 論文架構10
第二章 衰逝全反射12
2-1表面電漿共振現象12
2-1-1單一界面雙層結構之反射率22
2-1-2金膜厚度有限之三層結構反射率及其色散關係式23
2-1-3四層結構之反射率及其色散關係式27
2-1-4雙波導耦合之五層結構下的反射率及其色散關係式31
2-1-5五層結構下的雙表面電漿共振現象33
2-2光波導耦合37
2-2-1四層結構的Fabry-Perot干涉現象38
2-2-2五層結構的Fabry-Perot干涉現象44
第三章 電光調變元件之設計49
3-1電光調變器的最佳化組態49
3-2高斯光束的分析及其影響54
3-3薄膜介電常數與厚度的計算56
3-3-1 金屬層介電常數與厚度之計算56
3-3-2 介電層介電常數與厚度之計算63
第四章 電光調變器之製作67
4-1 金屬/電極材料的選擇67
4-2 電光材料的選擇68
4-2-1客主型電光高分子70
4-2-2側鏈型有機電光高分子72
4-3電光調變器的製作74
第五章 光學量測與調變77
5-1電光調變系統的光路設計77
5-2金屬層折射率及厚度之計算結果78
5-3 電光係數的計算80
5-4客主型電光高分子光調變器83
5-5側鏈型電光高分子光調變器89
第六章 結論101
參考文獻103
[1]G. T. Sincerbox and J. C. Gordon II, “Small fast large-aperture light modulator using attenuated total reflection,” Appl. Opt. 20, 1491-1493 (1981).
[2]J. Schildkraut, “Long-range surface plasmon electrooptic modulator,” Appl. Opt. 27, 4587-4590 (1988).
[3]Eric M. Yeatman and Martin E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613-615 (1989).
[4]Martin E. Caldwell and Eric M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880-3891 (1992).
[5]O. Solgaard, F. Ho, J. L. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61, 2500-2502 (1992).
[6]C. Jung, S. Yee, and K. Kuhn, “Electro-optic polymer light modulator based on surface plasmon resonance,” Appl. Opt. 34, 946-949 (1995).
[7]Yi Jiang, Zhuangqi Cao, Guang Chen, Xiaomng Dou, and Yingli Chen, “Low voltage electro-optic polymer light modulator using attenuated total internal reflection,” Optics & Laser Technology 33, 417-420 (2001).
[8]張明智, “E-O高分子材料,” 化工資訊 8, 22-27 (2002).
[9]R. F. Wallis and G. I. Stegeman, Electromagnetic Surface Excitations, Springer-Verlag, Berlin, (1985).
[10]H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, (1988).
[11]IOP Publishing Ltd, surface plasmon-polaritations, (1987).
[12]A. Yariv and P. Yeh, Optical Waves in Crystals, Propagation and Control of Laser Radiation, Wiley, New York, 489-492 (1984).
[13]E. N. Economou, “Surface plasmons in thin film,” Phy. Rev. 182, 539-554 (1969).
[14]Mikko Karppinen, Robert Charbonneau, and Pierre Berini, “Attenuated total reflection modulator based on surface plasmon excitation,” Proc. SPIE 4595, 259-267 (2001).
[15]C. Chiu Chan and T. Tamir, “Angular shift of a Gaussian beam reflected near the Brewster angle,” Opt. Lett. 10, 378-380 (1985).
[16]S. L. Chuang, “Lateral shift of dptical beam due to leaky surface- plasmon excitations,” J. Opt. Soc. Am. A 3, 593-599(1986).
[17]J.-J. Chyou, S.-J. Chen, C.-S. Chu, C.-H. Tsai, F.-C. Chien, G.-Y. Lin, K.-T. Huang, W.-C. Ku, S.-K. Chiu, and C.-M. Tzeng, “Multi-experiment linear data analysis for ATR biosensors,” Proc. SPIE 4819, 175-184 (2002).
[18]任貽均, 表面粗糙度對全反射衰減法之影響與分析, 國立中央大學光電科學研究所碩士論文, June (1994).
[19]蔡建宏, 衰逝全反射生醫感測儀之研製, 國立中央大學機械工程研究所碩士論文, June (2002).
[20]Navina Mehan and Abhai Mansingh, “Study of tarnished films formed on silver by exposure to H2S with the surface-plasmon resonance technique,” Appl. Opt. 39, 5214-5220 (2000).
[21]Timothy M. Chinowsky, Linda S. Jung, and Sinclair S. Yee, “Optimal linear data analysis for surface plasmon resonance biosensors,” Sensors and Actuators B 54, 89-97 (1999).
[22]Helence E. de Bruijn, Bert S.F. Altenburg, Rob P. H. Kooyman, and Jan Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Optics Communications 82, 425-432 (1991).
[23]K. A. Peterlinz and R.Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy,” Optics. Comm. 130, 260-266 (1996).
[24]Willam H. Steier, Antao Chen, Sang-Shn Lee, Sean Garner, Hua Zhang, Vadim Chuyanov, Larry R. Dalton, Fang Wang, Albert S. Ren, Cheng Zhang, Galina Todorova, Aaron Harper, Harold R. Fetterman, Datong Chen, Anand Udupa, Daipayan Bhattacharya, and Boris Tsap, “Polymer electro-optic devices for integrated optcs,” Chem. Phy. 245 487-506 (1999).
[25]Victor M Churikov and Chia-Chen Hsu, “Dynamics of photoinduced second order nonlinearity in dimethylamino- nitrostilbene polymer thin films,” Opt. Comm. 190, 367-371 (2001).
[26]A.-C. Le Duff, V. Ricci, T. Pliska, M. Canva, G. Stegeman, R. Twieg, and K. P. Chan, “Polymers for telecommunication devices based on x2:x2-cascading,” Conference on Lasers and Electro- Optics, OSA Summaries of papers, Optical Society of America, Washington, DC, 314-315 (1999).
[27]G. Khanarian, J. Sounik, D. Allen, S. F. Shu, C. Walton, H. Goldberg, and J. B. Stamatoff, “Electro-optic characterization of nonlinear-optical guest-host films and polymers,” J. Opt. Soc. Am. B 13, 1927-1934 (1996).
[28]A. Costela, I. García-Moreno, J. Barroso, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid matrices of methyl methacrylate with different comonomers,” Appl. Phys. B 70, 367-373 (2000).
[29]D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and N. Parsons, “Polymeric electro-optic waveguide modulator; materials and fabrication,” Proc. SPIE 1147, 222-232 (1989).
[30]ゴム、プラスチック性能表目次,
http://www.hagitec.co.jp/v_31gom_pla_hyoumokuji.htm
[31]高分子材料,
http://ibme.mc.ntu.edu.tw/MMS/Docs/Optics/Plastic.htm
[32]Tian-An Chen, Alex K.-Y, Jen, and Yongming Cai, “Facile approach to nonlinear optical side-chain aromatic polymides with large second-order nonlinearity and thermal stability,” J. Am. Chem. Soc. 117, 7295-7296 (1995).
[33]Tian-An Chen, Alex K.-Y, Jen, and Yongming Cai, “Two-step synthesis of side-chain aromatic polyimides for second-order nonlinear optics,” Macromolecules 29, 535-539(1996).
[34]Xuping Zhang, Xuejun Lu, Linghui Wu, and Ray T. Chen, “Contact poling of the nonlinear optical film for polymer-based electro-optic modulator,” Proc. SPIE 4653, 87-95 (2002).
[35]C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of polymers,” Appl. Phys. Lett. 56, 1734-1736 (1990).
[36] Takayoshi Kobayashi, Kaoru Minoshima, Shintaro Nomura, Shinji Fukaya, and Akikatsu Ueki, “Application of a new method of the determination of electro-optic constants to poled polycarbonate doped with organic molecules, polydiacetylene and other polymer films,” Proc. SPIE 1147, 182-197 (1989).
[37] Yi Jiang, Zhuangqi Cao, Qishun Shen,Xiaomng Dou, and Yingli Chen, “Improved attenuated-total-reflection technique for measuring the electro-optic coefficients of nonlinear optical polymers,” J. Opt. Soc. Am. B 17, 805-808 (2000).
[38]A. Driessen, H. M. Klein Koerkamp, and TH. J. A. PoPMA. “Novel Integrated Optic Intensity Modulator Based on Mode Coupling,” Fiber and Integrated Optics 13, 445-461 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔