(3.231.229.89) 您好!臺灣時間:2019/12/15 21:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:朴莉媮
研究生(外文):Tyas Wahyu Pramesthi
論文名稱:以生命週期評估滾筒碴與轉爐石應用於瀝青混凝土之研究
論文名稱(外文):Life Cycle Assessment of BSSF and BOF Slag DGAC Pavement
指導教授:陳世晃林志棟林志棟引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:132
中文關鍵詞:密級配瀝青混凝土鋪面鋼碴Gabi6全球暖化潛勢成本
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
本研究聚焦於瞭解使用天然粒料與採用鋼碴取代粗粒料之兩種密級配瀝青混凝土,其對於全球暖化潛勢(Global Warming Potential, GWP)之影響。使用的鋼碴材料分別為轉爐石(Basic Oxygen Furnace, BOF)及滾筒碴(Baosteel’s Slag Short Flow, BSSF),並藉由Gabi 6 生命週期計算軟體之使用,深入瞭解鋪面活動產生之全球暖化潛勢,發現使用轉爐石或滾筒碴取代粗粒料會使全球暖化潛勢上昇。依據模擬運算結果顯示,全球暖化潛勢會隨粒料使用量多寡而增加,使用10%、20%、30%及100%之鋼碴取代粗粒料於面層內相較於傳統密級配瀝青混凝土會使全球暖化潛勢增加4.78%至7.13%之間,然而以鋪築成本考量,使用鋼碴會帶來巨大效益。
研究結果顯示使用轉爐石或滾筒碴比傳統密級配瀝青混凝土能省下多達3.66%(10%鋼碴之密級配瀝青混凝土)至36.47%(100%鋼碴之密級配瀝青混凝土)之總成本,依據全球暖化潛勢模擬及成本分析後,採用鋼碴(轉爐石或滾筒碴)取代天然粗粒料於密級配瀝青混凝土中是可行的且值得未來更多深入探討。

This research is focused on how Global Warming Potential (GWP) was influenced by natural aggregates and replacement of coarse natural aggregate with steel slag on Dense Grade Asphalt Concrete (DGAC). Two types of steel slag, Basic Oxygen Furnace (BOF) and Baosteel’s Slag Short Flow (BSSF) slag were used to replace coarse natural aggregates. By using GaBi 6 Education software, this research discovered GWP which caused by pavement’s activities. Replacement of coarse aggregate with steel slag including BOF or BSSF slag will increase GWP. According to the simulation result, the GWP will increase varies depending on the amount of aggregate used. By using 10%, 20%, 30% and 100% steel slag which replace coarse aggregate in surface layer, GWP was increase between 4.78% until 7.13% compared to the traditional DGAC. However, based on construction cost point of view, using steel slag give significant benefit. The results show that by using BOF or BSSF slag save 3.66% (DGAC 10% steel slag) until 36.47% (DGAC 100% steel slag) of total cost compare to traditional DGAC. Based on the results of GWP simulation and cost analysis, replacement of coarse natural aggregate with steel slag (BOF or BSSF) in DGAC is acceptable and worthy of further research.
ABSTRACT i
ACKNOWLEDGEMENTS ii
Contents iii
List of Figures vi
List of Tables viii
1. INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 2
1.3 Research Scope 2
1.4 Research Flowchart 4
2. LITERATURE REVIEW 5
2.1 Steel Slag and Asphalt Concrete 5
2.2 Steelmaking Processes in Taiwan 6
2.3 Type and Utilization of Steel Slag 6
2.3.1 Steel Slag as Waste Material 7
2.3.2 Steel Slag as Recycled Material 7
2.4 Benefit Using Steel Slag in Road Construction 8
2.4 Life Cycle Assessment 9
2.5 Life Cycle Assessment on Pavement 11
2.6 Greenhouse Gasses Emissions 12
2.7 GaBi 6 as LCA software 13
3. STUDY PLAN 15
3.1 Life Cycle Inventory Data 15
3.1.1 Road Section 15
3.1.2 Production Phase 16
3.1.3 Construction Phase 21
3.2 Impact Assessment Phase using GaBi 6 26
3.2.1 Gabi 6 26
3.2.2 Limitation on GaBi 6 27
3.3 Cost Calculation 27
4. RESULT ANALYSIS & DISCUSSION 28
4.1 General Design Scheme 28
4.2 Life Cycle Inventory Analysis for traditional DGAC 28
4.3 Life Cycle Inventory Analysis for Pavement with BOF slag 29
4.4 Life Cycle Inventory Analysis for Pavement with BSSF slag 31
4.5 Impact Assessment of Traditional DGAC pavement 32
4.6 Impact Assessment of Pavement with steel slag 36
4.6.1 Impact Assessment of BOF DGAC Pavement with Steel Production 37
4.6.2 Impact Assessment of 100% BOF DGAC Pavement without Steel Production 39
4.6.3 Impact Assessment of BOF DGAC using 30%, 20%, 10% slag without Steel Production 41
4.6.4 Impact Assessment of BSSF DGAC Pavement with Steel Production 47
4.6.5 Impact Assessment of 100% BSSF DGAC Pavement without Steel Production 49
4.6.6 Impact Assessment of BSSF DGAC using 30%, 20%, 10% of slag without Steel Production 52
4.6.7 Construction Phase 57
4.7 Cost Analysis 59
4.7.1 Traditional DGAC Cost 59
4.7.2 BOF DGAC Cost 60
4.7.3 BSSF DGAC Cost 61
4.8 Discussion 63
4.8.1 Global Warming Potential 63
4.8.2 Pavement Construction Cost 64
4.8.3 Transportation Cost 65
4.8.4 GWP and Cost Comparison 66
5. CONCLUSION and RECOMMENDATION 68
5.1 Conclusion 68
5.2 Recommendation 68
Reference 70
APPENDIX I GABI SETTINGS AND RESULTS 73
APPENDIX II COST ANALYSIS 101

A. Carlson, "Life Cycle Assessment of road and pavements," VTI rapport 736 A, Swedish, 2011.
C. Te Chiu, "Current Pavement Technologies in Taiwan," Fourth US-Taiwan Bridge Engineering Workshop, Princeton, New Jersey, 2008.
L. Dumitrescu, S. . G. Maxineasa, I. M. Simion, N. Taranu, R. Andrei and M. Gavrilescu, "EVALUATION OF THE ENVIRONMENTAL IMPACT OF ROAD PAVEMENTS FROM A LIFE CYCLE PERSPECTIVE," Environmental Engineering and Management Journal, vol. 13, no. 2, pp. 449-455, 2014.
T. Häkkinen and K. Mäkelä, "Environmental adaptation of concrete – Environmental impact of concrete and asphalt pavements," Julkaisija-Utgivare, Finland, 1996.
C.-T. Chiu, "Current Pavement Technologies in Taiwan," in Fourth US-Taiwan Bridge Engineering Workshop, Princeton, New Jersey, 2008.
H. L. Sheng and L. D. Fong , "Influence of Cooling Efficiency of Basic Oxygen Furnace Slag Used in Recycled Asphalt Mixtures," International Journal of Pavement Research and Technology, vol. 4, no. 6, pp. 347-355, 2011.
P. Chaurand, J. Rose, J. Domas and J. Y. Bottero, "Speciation of Cr and V within BOF steel slag reused in road construction," Journal of Gheochemical Exploration, vol. 88, pp. 10-14, 2006.
Y. Xue, S. Wu, H. Hou and J. Zha, "Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture," Journal of Hazardous Material, vol. B138, pp. 261-268, 2006.
S. H. Chen, J. D. Lin, D. Huang and C. T. Hung, "Effect of Film Thickness and Voids in Mineral Aggregate in Basic Oxygen Furnace Slag Dense-Graded Asphalt Concrete," Journal of Testing and Evaluation, vol. 43, 2015.
C. C. Chao, "Life Cycle Inventory for Steel in Taiwan," 東海學報, vol. 42, pp. 1-11, 2001.
Nippon Slag Association , "Nippon Slag Association," Nippon Slag Association, 2003. [Online]. Available: http://www.slg.jp/e/slag/kind.html. [Accessed 20 March 2015].
D. S. Corporation, "Dragon Steel," Dragon Steel Corporation , 2015. [Online]. Available: http://www.dragonsteel.com.tw/en/. [Accessed 20 05 2015].
H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan and H. Chen, "An overview of utilization of steel slag," The 7th International Conference on Waste Management and Technology, vol. 16, pp. 791-801, 2012.
D. W. Lewis, "PROPERTIES AND USES OF IRON AND STEEL SLAGS," in National Slag Association Presented at Symposium on Slag National Institute for Transport and Road Research South Africa, South Africa, 1992.
H. Motz and J. Geiseler, "Products of steel slags an opportunity to save natural resources," Waste Management, vol. 21, pp. 285-293, 2001.
ISO, "Environmental management – life cycle assessment – principles and framework". Geneva Patent 14040:2006(E), 2006.
ISO, "Environmental management – life cycle assessment – requirement and guidelines". Geneva Patent ISO 14044:2006(E), 2006.
N. J. Santero, E. Masanet and A. Horvath, "Life-cycle assessment of pavements. Part I: Critical review," Resources, Conservation and Recycling, vol. 55, pp. 801-809, 2011.
J. Chehovits and L. Galehouse, "Energy Usage and Greenhouse Gas Emissions of Pavement Preservation Processes for Asphalt Concrete Pavements," in Compendium of Papers from the First International Conference on Pavement Preservation,Paper 65, Newport Beach, CA, 2010.
R. Vidal, E. Moliner, G. Martínez and M. C. Rubio, "Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement," Resources, Conservation and Recycling, vol. 74, p. 101– 114, 2013.
M. Chappat and J. Bilal, "The Environmental Road of the Future: Life Cycle Analysis, Energy Consumption and Greenhouse," Colas Group, 2003.
G. Software, "GaBi Software," Gabi Software, 2014. [Online]. Available: http://www.gabi-software.com/taiwan/software/gabi-education/. [Accessed 12 06 2015].
B. Kim, H. Lee, H. Park and H. Kim, "Framework for Estimating Greenhouse Gas Emissions Due to Asphalt Pavement Construction," JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, vol. 138, no. 11, pp. 1312-1321, 2012.
U.S Environmental Protection Agency, "Hot Mix Asphalt Plants Emission Assessment Report," U.S Environmental Protection Agency, North Carolina, 2000.
H. Stripple, "Life Cycle Assessment of Road A Pilot Study for Inventory Analysis," IVL Swedish Environmental Research Institute, Gothenburg, Sweden, 2001.
H. P. Tserng, J. S. Russellb, B. K. Krishnamurth and R. L. Schmitt, "An operations planning system for asphalt pavement compaction," in International Association for Automation and Robotics in Construction, Tokyo, 1996.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔