跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/26 17:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李岡林
研究生(外文):Kung-Lin Lee
論文名稱:單井循環流水力實驗之理論改進與發展
論文名稱(外文):The theoreitical improvement and development of circulation flow test.
指導教授:陳家洵陳家洵引用關係
指導教授(外文):Chia-Shyun Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:應用地質研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:定水頭污染場址水文地質參數雙極水流實驗循環流水力實驗單井實驗水力實驗
外文關鍵詞:constant headpumping testsingle-well testcontaminated siteaquifer parameterDFTCHCFTQHCFTCFTdipole flow testcirculation flow test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水文地質調查提供污染場址地下水流速、流向、流量資料及水文地質特性,
對後續的污染調查、監測及整治有莫大的裨益。傳統的水文地質特徵調查技術抽
水實驗(pumping test)因抽出水處置問題並不十分適用於污染場址,微水實驗(slug
test)則因實驗方法限制不易求得完整的水文地質參數。相較之下,單井循環流實
驗方法較適合污染場址水文地質調查。雙極水流實驗(dipole flow test, DFT)為近
年發展的一種單井循環流實驗。DFT 在井中用氣囊將井篩段分為上、下兩段,
上井篩段用幫浦抽水而下井篩段釋出抽入水,在含水層中造成循環流場因而沒有
抽出水處置問題,而且理論上可用於推估水平方向水力傳導數、垂直方向水力傳
導數、及比儲水係數。但實作顯示DFT 在不同之水文地質情況下,均會在短時
間內達到穩態,不利於推估垂直方向的水力導數及比儲水係數。針對此缺點,本
研究發展定水頭循環流水力實驗(constant head circulation flow test, CHCFT),在上
井篩段利用定水頭注水方法維持固定負水頭(洩降),下井篩段利用定洩降抽水維
持固定正水頭,產生長期暫態循環流場,可同時推估水平方向水力傳導數、垂直
方向水力傳導數、及比儲水係數。然而,目前所能使用的定洩降抽水方法無法將
井中洩降固定於地表下8 至45 公尺間,使得CHCFT 的應用範圍隨著受到限制。
因此我們將CHCFT 中定洩降抽水部份,置換為容易執行且無洩降限制的定流率
抽水,成為另一個單井循環流實驗模式: 定流率-定洩降循環流水力實驗(constant
rate – constant head circulation flow test, QHCFT)。由於QHCFT 上、下井篩段中各
自所維持的水力實驗狀態不同,因此可以產生長期暫態循環流場,可同時推估水
平方向水力傳導數、垂直方向水力傳導數、及比儲水係數。本研究同時發展
CHCFT 及QHCFT 於受壓及非受壓兩種含水層形態下考慮正薄壁效應的理論,
並利用標準曲線分析方法(type curve analysis)以假想值資料(hypothetical data)演
練參數推估過程,發現當實驗井周圍存在薄壁,但其忽略其影響直接進行參數推
估時,可能會得到過小的垂直方向水力傳導係數及比儲水係數。
Single-well tests are less expensive than multiple well tests in hydrogeologic investigation.
Single-well tests also withdraw limited amount of water and hence are suitable for
contamination sites. The dipole flow test (DFT) is a single-well circulation flow test (CFT),
which generates a circulation flow field in the aquifer by pumping water in the upper well
screen section using a constant flow rate +Q and discharging the pumped water through the
lower well screen section in -Q. In theory, DFT is able to estimate the horizontal hydraulic
conductivity (Kr), the vertical hydraulic conductivity (Kz), and the storage coefficient
(S).However, field experiments of DFT under different hydorgeological conditions showed
that DFTs reached steady state rapidly, unfavorable for the estimation of Kz and S. This
study improves the design of DFT, and develops the constant head circulation flow test
(CHCFT), which generates a circulation flow field in the aquifer by pumping water in the
upper well screen section using a positive constant head and discharging water through the
lower well screen section using a constant negative head (drawdown). This constant-head
condition renders CHCFT to reach steady state after a long period time, during which Kr,
Kz, and S can be determined without difficulty. However, current constant drawdown
pumping techniques can not discharge water continuously with a constant water level
between 8 to 45 meters below ground surface, and makes the application of CHCFT
limited. Hence we replace the constant drawdown pumping in CHCFT with a constant rate
pumping which has less limitation on the drawdown level and develop another CFT model:
constant rate – constant head circulation flow test (QHCFT). Due to two different pumping
techniques are applied in two different screen sections, QHSCT reaches steady state after a
long period as CHCFT, and Kr, Kz, and S can be determined without difficulty. When
developing CHCFT and QHSCT, both confined and unconfined condition with skin effect
are considered, and the type curve analysis is tested with hypothetical data for the
determination of skin factor (Sk), Kr, Kz, and S. It is found if skin exists but its effect is
neglected will result in a false determination of Kz and S.
目錄 i
圖目錄 iv
表目錄 viii
符號說明 ix
第一章 背景與目的 1
1.1 前言 1
1.2 前人研究 3
1.3 目的與方法 6
1.3.1 目的 6
1.3.2 方法 7
第二章 CHCFT模式發展 11
2.1 薄壁之概念與模式化 11
2.2 CHCFT於受壓含水層中(CHCFTCON)數學模式建立 13
2.2.1 暫態模式解題過程與模式解 16
2.2.2 利用Gram-Schmidt方法求解 21
2.2.3 穩態模式解 23
2.3 CHCFT於非受壓含水層中(CHCFTUNC)數學模式建立 25
2.4 CHCFT模式計算結果 27
2.4.1 尋找最佳基本參數 28
2.4.2 計算結果正確性之驗證 31
2.4.3 達成穩態之必要條件 35
第三章 定洩降抽水實驗設備討論與執行結果 38
3.1 現有定洩降抽水設備討論 38
3.1.1 Autopump�筑藎呇㊣乾� 38
3.1.2 蠕動式幫浦 39
3.1.3 SUBGARD�� 42
3.2 SUBGARD�筒馦L層含水層之實驗結果 43
3.3 定洩降抽水實驗目前困難 47
第四章 QHCFT模式發展 48
4.1 QHCFT於受壓含水層中(QHCFTCON)數學模式建立 48
4.2 QHCFT於非受壓含水層中(QHCFTUNC)數學模式建立 51
4.3 QHCFT模式計算結果正確性驗證 53
4.4 CHCFT及QHCFT循環流場建立之驗證 56
第五章 參數敏感度分析 59
5.1 、 、 、 參數敏感度分析 59
5.2 敏感度分析 61
5.3 敏感度分析 64
5.4 參數敏感度分析 64
5.5 敏感度分析 66
5.6 值對於小時間曲線之影響 71
5.7 參數敏感度分析結論 74
第六章 參數推估方法 75
6.1 標準曲線分析方法 75
6.2 參數推估步驟 76
6.2.1 CHCFT參數推估步驟 76
6.2.2 QHCFT參數推估步驟 77
6.3 假想推估過程及結果 77
6.3.1 CHCFT參數推估 78
6.3.2 QHCFT參數推估 81
6.4 無法得到 資料時假想推估過程及結果 84
6.4.1 CHCFT參數推估 84
6.4.2 QHCFT參數推估 86
6.4.3 薄壁效應未知情況下之推估結果 90
第七章 結論與建議 93
參考文獻 95
附錄ㄧ QHCFT數學模式無因次化過程 99
附錄二 Gram-Schmidt方法運算過程(N=0~5) 104
附錄三 Stehfest數值拉普拉斯逆轉換方法 106
Agarwal, R. G., R. Al-Hussainy, and H. J. Ramey, Jr., An investigation of wellbore storage and skin effect in unsteady liquid flow: I. Analytical treatment, Soc. Pet. Eng. J., 279-290, 1970.
Butler, J. J., Jr., Pumping tests in nonuniform aquifers-the radially symmetric case, J. Hydrol., 101, 15-30, 1988.
Butler, J.J., The Design, Performance, and Analysis of Slug Tests, Lewis Publishers, N.Y., 243PP, 1998.
Cassiani, G., Z. J., Kabala, and M. A. Medina Jr., Flowing partially penetrating well: solution to a mixed-type boundary value problem., Adv. Water Resour., 23, 59-68, 1999.
Chen, C. S., and C. C. Chang, Use of cumulative volume of constant-head injection test to estimate aquifer parameters with skin effects: field experiment and data analysis, Water Resour. Res., 38(5), doi: 10.1029/2001WR000300, 2002.
Chang, C. C., and C. S. Chen, Field experiment and data analysis of a constant-head injection test with skin effects in a low-transmissivity aquifer, TAO, 13(1), 15-38, , 2002a.
Chang, C. C., and C. S. Chen, An integral transform approach for a mixed boundary problem involving a flowing partially penetrating well with infinitesimal well skin, Water Resour. Res., 38(6), doi: 10.1029/2001WR001091, 2002b.
Chang, C. C., and C. S. Chen, A flowing partially penetrating well in a finite-thickness aquifer: a mixed-type initial boundary value problem, J. Hydrol., 271, 101-118, 2003.
Chu, W. C., J. Garcia-Rivera, and R. Raghavan, Analysis of interference test data influenced by wellbore storage and skin at the flowing well, J. Pet. Tech., 171-178, 1980.
Dagan, G., A note on packer, slug, and recovery tests in unconfined aquifers, Water Resour. Res., 14, 929-934, 1978.
Hantush, M. S., Drawdown around a partially peretraing well, J. Hydraul. Div. Am. Soc. Civ. Eng., 87(HY4), 83-98, 1961.
Hantush, M. S., Hydraulics of Wells, Adv. In Hydrosci., vol. 1, edited by W. T. Chow, Academic, San Diego, Calif., 1964.
Halihan. T., V. A. Zlotnik., Asymmetric dipole-flow test in a fractured carbonate aquifer, Ground Water, 40(5), 491-499, 2002
Hiller, C. K., and B. S. Levy, Estimation of aquifer diffusivity from analysis of constant-head pumping test data, Ground Water, 32(1), 47-52, 1994.
Huang. S. C., and Y. P. Chang, Anisotropic heat conduction with mixed boundary conditions, J. Heat Transfer, 106, 646-648, 1984.
Hurst, W., J. D. Clark, and E. B. Brauer, The skin effect in producing wells, J. Pet. Tech., Nov., 1483-1489, 1969.
Hvilsh�嶴, S., K. H. Jensen, and B. Madsen, Single-well dipole flow tests: parameter estimation and field testing, Ground Water, 38(1), 53-62, 2000.
Hyder Z., J. J. Butler Jr., C. D. McElwee, and W. Z. Liu, Slug tests in partially penetrating wells, Water Resour. Res., 30(11), 2945-2957, 1994.
Jones, L., T. Lemar, and C-T. Tsai, Results of two pumping tests in Wisconsin age weathered till in Iowa. Ground Water, 30(4), 529-538, 1992.
Kabala, Z.J., The dipole flow test: A New single-borehole test for aquifer characterization, Water Resour. Res., 29(1), 99-107, 1993.
Kirkham, D., and W. L. Powers, Advanced Soil Physics, pp. 140-159, Appendix 2, John Wiley, New York, 1972.
Kruseman, G.P., and N.A. de Ridder, Analysis and Evaluation of Pumping Test Data, ILRI publication 47, Netherlands, 377PP, 1990.
Moench, A. F., Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer, Water Resour. Res., 33(6), 1397-1407, 1997.
Rice, J B., Constant drawdown aquifer tests: an alternative to traditional constant rate tests, Ground Water Monit. R., 18(2), 76-78, 1998.
Selim, M. S., and D. Kirkham, Screen theory for wells and soil drainpipes, Water Resour. Res., 10(5), 1019-1030, 1974.
Sneddon, I. N., The Use of Integral Transforms, 540pp., McGraw-Hill, New York, 1972.
Stehfest, H., Numerical inversion of laplace transforms, Commun. ACM, 13, 47-39, 1970.
Streltsova, T.D., Well Testing in Heterogeneous Formations, An Exxon Monograph, John Wiley and Sons, N.Y., 413PP, 1988.
van Everdingen, A. F., The skin effect and its influence on the productive capacity of a well, Trans. Am. Inst. Min. Metall. Pet. Eng., 198, 171-176, 1953.
Zlotnik, V. A., and B. R. Zurbuchen, Dipole probe: design and field applications of a single-borehole device for measurements of vertical variations of hydraulic conductivity, Ground Water, 36(6), 884-893, 1998.
Zlotnik, V. A., B. R. Zurbuchen, and T. Ptak, The steady-state dipole flow test for characterization of hydraulic conductivity statistics in a highly permeable aquifer: Horkheimer Insel site, Germany, Ground Water, 39, 504-516, 2001
Zlotnik, V., and G. Ledder, Theory of dipole flow in uniform anisotropic aquifers, Water Resour. Res., 32(4), 1119-1128, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top