(3.231.229.89) 您好!臺灣時間:2019/12/15 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:李岳蒲
研究生(外文):Yueh-Pu Lee
論文名稱:應用磁性粒子於微流體裝置之可逆接合
指導教授:曹嘉文
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:61
中文關鍵詞:可逆接合微流體裝置磁性
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
本研究成功的證明使用氧化鐵磁性粒子與二甲基矽氧烷(PDMS)製作出磁性PDMS裝置,其為一種簡單製作且可以達到高強度的可逆磁性接合方法;在此提出了兩種磁性PDMS裝置,包括不可光學檢測的暗視野裝置與可光學檢測的明視野裝置。
研究顯示,暗視野裝置製作上類似標準的PDMS鑄造,較不受微流道幾何形狀的影響;而明視野裝置澆鑄性能與微流道幾何圖形高度有關,實驗針對微流道的佈局進行了詳細的研究,探討PDMS墊塊層與微模具基板之間的間隙大小對於製作明視野裝置的相關性。磁性PDMS裝置接合強度測試中,證明在裝置底部增加一層PDMS薄膜層可以有效改善表面粗糙度,並且有效的提升磁性PDMS的可逆磁性接合強度。測試結果顯示,有PDMS薄膜的暗視野裝置最佳接合強度為110 KPa;而有PDMS薄膜的明視野裝置最佳接合強度為81 KPa。

Iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite was successfully demonstrated as a simple and high-strength reversible magnetic bonding method in this study. Dark-field (optical inspection impossible) and light-field (optical inspection possible) MMPs-PDMS casting were presented. This study showed that microchannel geometries have limited influence on dark-field casting which is similar to standard PDMS casting. Light-field casting performance was highly related to microchannel geometries. Effects of the microchannel layout, and the gap between the cover-PDMS layer and micromold substrate were detail investigated. MMPs-PDMS magnetic bonding experiments showed that thin PDMS film incorporating an MMPs-PDMS layer can effectively reduce surface roughness and enhance MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated dark-field MMPs-PDMS device exhibited the greatest bonding strength of 110 KPa. For a light-field MMPs-PDMS device with a thin PDMS film, a magnetic bonding strength of 81 KPa can be achieved.
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
第一章 緒論 1
1.前言 1
1.2文獻回顧 3
1.3研究目的 9
1.4論文架構 10
第二章 實驗設計與製程 11
2.1製程設備與耗材 11
2.1.1 製程設備與實驗儀器 11
2.1.2 製程材料與實驗耗材 12
2.2 黃光製程 13
2.2.1 光罩製作 14
2.2.2 晶圓清潔 15
2.2.3 光阻塗佈 15
2.2.4 軟烤 16
2.2.5 曝光 17
2.2.6 曝後烤 17
2.2.7 顯影 17
2.2.8 硬烤 18
2.2.9母模增厚製程 18
2.3 "Fe3O4" 磁性奈米粒子合成[28] 19
2.4 磁性PDMS裝置製程 21
2.4.1 SU-8母模旋佈PDMS薄膜 22
2.4.2 PDMS墊塊製作 22
2.4.3 磁性PDMS混合與填入 23
2.4.4磁性PDMS裝置組裝 25
2.4.5暗視野裝置製程 25
2.4 磁性粒子於明視野裝置內之含量判定 26
2.5 磁性PDMS裝置接合強度測試裝置架設 27
2.5.1檢測流程 28
2.6 磁性PDMS表面粗糙度測量方法 28
第三章 結果與討論 29
3.1 磁性PDMS吸入能力測試 29
3.1.1母模圖形-直線 30
3.1.2母模圖形-曲線 33
3.1.3母模圖形-夾角 36
3.2 磁性PDMS裝置接合強度測試 39
3.2.1明視野磁性PDMS裝置 40
3.2.2暗視野磁性PDMS裝置 42
3.3 磁性PDMS表面粗糙度測量 44
3.3.1 PDMS表面粗糙度量測 45
3.3.2磁性PDMS裝置無增加PDMS薄膜 45
3.3.3磁性PDMS裝置增加PDMS薄膜 45
第四章 結論 48
第五章 參考文獻 49

[1] E. Livak-Dahl, I. Sinn, and M. Burns, "Microfluidic Chemical Analysis Systems," Annual Review of Chemical and Biomolecular Engineering, Vol 2, vol. 2, pp. 325-353, 2011.
[2] D. B. Weibel and G. M. Whitesides, "Applications of microfluidics in chemical biology," Current Opinion in Chemical Biology, vol. 10, pp. 584-591, Dec 2006.
[3] S. C. Jakeway, A. J. de Mello, and E. L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius Journal of Analytical Chemistry, vol. 366, pp. 525-539, Mar-Apr 2000.
[4] A. Alrifaiy, O. A. Lindahl, and K. Ramser, "Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering," Polymers, vol. 4, pp. 1349-1398, Sep 2012.
[5] L. Nan, Z. D. Jiang, and X. Y. Wei, "Emerging microfluidic devices for cell lysis: a review," Lab on a Chip, vol. 14, pp. 1060-1073, 2014.
[6] C. Iliescu, "Microfluidics in glass: Technologies and applications," Informacije Midem-Journal of Microelectronics Electronic Components and Materials, vol. 36, pp. 204-211, Dec 2006.
[7] C. Iliescu, H. Taylor, M. Avram, J. M. Miao, and S. Franssila, "A practical guide for the fabrication of microfluidic devices using glass and silicon," Biomicrofluidics, vol. 6, Mar 2012.
[8] H. Becker and L. E. Locascio, "Polymer microfluidic devices," Talanta, vol. 56, pp. 267-287, Feb 11 2002.
[9] G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application," Biotechniques, vol. 38, pp. 429-446, Mar 2005.
[10] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science, vol. 288, pp. 113-116, Apr 7 2000.
[11] U. M. Attia, S. Marson, and J. R. Alcock, "Micro-injection moulding of polymer microfluidic devices," Microfluidics and Nanofluidics, vol. 7, pp. 1-28, Jul 2009.
[12] S. K. Sia and G. M. Whitesides, "Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies," Electrophoresis, vol. 24, pp. 3563-3576, Nov 2003.
[13] C. W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and Nanofluidics, vol. 6, pp. 1-16, Jan 2009.

[14] J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices," Accounts of Chemical Research, vol. 35, pp. 491-499, 2002/07/01 2002.
[15] C. H. Lin, C. H. Chao, and C. W. Lan, "Low azeotropic solvent for bonding of PMMA microfluidic devices," Sensors and Actuators B-Chemical, vol. 121, pp. 698-705, Feb 20 2007.
[16] L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, "Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents," Lab on a Chip, vol. 6, pp. 66-73, 2006.
[17] M. Laher and S. Hild, "A detailed micrometer scale investigation of the solvent bonding process for microfluidic chip fabrication," Rsc Advances, vol. 4, pp. 5371-5381, 2014.
[18] C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. DeVoe, "Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment," Lab on a Chip, vol. 7, pp. 499-505, 2007.
[19] Y. H. Tennico, M. T. Koesdjojo, S. Kondo, D. T. Mandrell, and V. T. Remcho, "Surface modification-assisted bonding of polymer-based microfluidic devices," Sensors and Actuators B-Chemical, vol. 143, pp. 799-804, Jan 7 2010.
[20] S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, "Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength," Journal of Microelectromechanical Systems, vol. 14, pp. 590-597, Jun 2005.
[21] M. A. Eddings, M. A. Johnson, and B. K. Gale, "Determining the optimal PDMS-PDMS bonding technique for microfluidic devices," Journal of Micromechanics and Microengineering, vol. 18, Jun 2008.
[22] P. Kim and K. Y. Suh, "Rigiflex, Spontaneously Wettable Polymeric Mold for Forming Reversibly Bonded Nanocapillaries," Langmuir, vol. 23, pp. 4549-4553, 2007/04/01 2007.
[23] H. Lee, B. P. Lee, and P. B. Messersmith, "A reversible wet/dry adhesive inspired by mussels and geckos," Nature, vol. 448, pp. 338-U4, Jul 19 2007.
[24] M. Le Berre, C. Crozatier, G. Velve Casquillas, and Y. Chen, "Reversible assembling of microfluidic devices by aspiration," Microelectronic Engineering, vol. 83, pp. 1284-1287, 2006.



[25] Q. Chen, G. Li, Y. Nie, S. H. Yao, and J. L. Zhao, "Investigation and improvement of reversible microfluidic devices based on glass-PDMS-glass sandwich configuration," Microfluidics and Nanofluidics, vol. 16, pp. 83-90, Jan 2014.
[26] M. Rafat, D. R. Raad, A. C. Rowat, and D. T. Auguste, "Fabrication of reversibly adhesive fluidic devices using magnetism," Lab Chip, vol. 9, pp. 3016-9, Oct 21 2009.
[27] M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, "Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation," Microfluidics and Nanofluidics, vol. 10, pp. 1097-1107, 2010.
[28] C.-T. Chen and Y.-C. Chen, "Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry," Anal Chem, vol. 77, pp. 5912-5919, 2005/09/01 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔