(3.234.221.67) 您好!臺灣時間:2021/04/11 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李思媞
研究生(外文):Putu Risti Nirmalasari
論文名稱(外文):The Effects of Natural Teeth with Different Interface Tissue around Implant towards Significant Direction of Resonance Frequency Vibration of Dental Implant on Human Mandible by Resonance Frequency Analysis
指導教授:潘敏俊
指導教授(外文):Pan Min-Chun
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:76
中文關鍵詞:顯著共振方向共振頻率模型結構共振頻率分析有限元素分析
外文關鍵詞:Significant DirectionResonance Frequencies (RFs)Mode ShapeResonance Frequency AnalysisFinite Element Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文之研究主要為找尋骨整合產生顯著共振頻率之方向以協助骨整合優劣之評估。顯著共振頻率的方向可以提供共振頻率分析的相關資訊。研究中探討植體周圍的自然牙齒與介面組織對於植體的最大共振頻率值的影響。研究中使用ANSYS Workbench Inc. 軟體進行模態分析及諧波響應分析。其中,模態分析可獲得自然頻率與模態結構,而諧波響應分析給定共振頻率之頻譜,用以判斷出最高之共振頻率值。在頻譜上得到最高共振頻率值後,可繪出雷達圖顯示下顎骨模型的共振方向趨勢線。整體研究過程是基於動態結構理論及有限元素法進行分析。
本實驗利用懸臂樑原理來分析植體結構並解釋在主要案例(下顎骨模型)中發生的現象。在懸臂量圓形與方型剖面分析中,圓形橫切面的結果顯示在不同激振方向有相同的共振頻率,反之方型橫切面也是。使用的人造骨塊分別為結表皮層厚度1mm的兩塊及2mm的一塊,其中1mm的人造骨塊又可分為有含介面組織及不含介面組織,而2mm的人工骨塊則不含介面組織。1mm的人造骨塊量測結果得知,不含介面組織的人工骨塊與植牙體結合硬度大於含介面介質的人工骨塊;2mm的人工骨塊將量測方向分為短軸 (頰舌buccal-lingual, BL) 方向與長軸 (近遠心mesial-distal, MD) 方向,且發現短軸方向之頻率高於長軸。
在本研究中,依據植體兩側有無牙齒將下顎骨模型分成三種型式。模型一為兩側皆有牙齒;模型二為兩側皆無牙齒;模型三為僅一側有牙齒。介面組織依骨整合程度採用三種楊氏係數 (即2, 25,137 MPa) ,並分別應用到上述三類下顎骨模型中作分析。結果顯示,剛性2 MPa的介面組織在不同模態與各種激振方向,都產生幾乎相同的共振頻率,而剛性25 MPa與137 MPa的介面組織在不同的激振方向,共振頻率則有明顯差異。
關鍵字: 顯著共振方向,共振頻率,模型結構,共振頻率分析,有限元素分析。
Abstract
The work within this thesis investigates the significant direction of resonance frequency for osseointegration assessment. The significant directions of resonance frequencies give information to support the resonance frequency analysis. This study discusses about the influence of natural teeth and interface tissue as the structures around dental implantation to the resonance frequencies. The analysis performed in numerical by using modal analysis and harmonic response analysis from ANSYS Workbench Software Inc. Modal analysis determine the natural frequencies and mode shapes of a structure, whereas harmonic response analysis determine the resonance frequencies spectrum. After the highest resonance frequency obtained on the spectrum, it plotted into the radar graph and see the direction trend line in certain mandible models. The analysis based on the theories of dynamic structure by using finite element method.
The analysis of cantilever beam and artificial bone block were performed as an initial analysis to explain phenomena that occur in the main case (mandible models). Cantilever beam used two different types of cross-sections, circular and rectangular. The resonance frequency results of circular cross-section were all the same in different excitation directions, vice versa for rectangular cross-section. Artificial bone block was modeled with cortical thickness without-interface tissue, 2mm. The resonance frequency value in buccal-lingual (BL) direction is higher than mesial-distal (MD) direction. The other artificial bone blocks were modeled in two different conditions of interface tissue with cortical thickness, 1mm. The result showed that the behavior of a physical structure without-interface tissue is stiffer than with-interface tissue but the mode shapes remain the same.
In this thesis, the mandible was varied into three different models, based on position of teeth beside implant structure with different interface tissue stiffness. Model-1 was mandible with teeth beside implant structure; Model-2 was mandible without teeth beside implant structure; Model-3 was the mandible with teeth only on one side of implant structure. Interface tissue was varied into three different values of Young’s modulus (2, 25, 137 MPa) and it applied on each mandible models. The result showed the lower stiffness (2MPa) had almost the same resonance frequency in every direction, vice versa for higher stiffness (25, 137MPa) which had a significant direction in different excitation load directions.

Keywords: significant direction, resonance frequencies (RFs), mode shape, resonance frequency analysis (RFA), finite element analysis (FEA).
摘要 i
Abstract ii
Preface iii
Table of Contentsiv
List of Figures vi
List of Tables x
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Literature Review 4
1.3 Research Scope and Frameworks 6
Chapter 2 Theoretical Basis 8
2.1 Dynamics of Structures 8
2.1.1 Modal Analysis 9
2.1.2 Harmonic Response Analysis 12
2.1.3 Cantilever Beam Analysis 15
2.2 Finite Element Method 18
Chapter 3 Analysis of Cantilever Beam and Artificial Bone Blocks 20
3.1 Cantilever Beam 20
3.1.1 Mathematical Analysis and Results 21
3.1.2 Numerical Analysis and Results 23

3.2 Artificial Bone Blocks 25
3.2.1 Material and Method 25
3.2.2 Numerical Analysis and Results 27
3.3 The Significant Effect of 3D Model of Artificial Bone Blocks With-Interface
Tissue and Without-Interface Tissue in Complete Healing Condition 28
3.4 Discussion 29
Chapter 4 Analysis of Mandible with Three Variations of Teeth around Implant Structure 32
4.1 Numerical Simulation of Mandible with Three Variations of Teeth around Implant Structure 32
4.2 Numerical Results of Significant Directions in Mandible with Three Variations of Teeth around Implant Structure 38
4.3 Discussion of Significant Directions in Mandible with Three Variations of Teeth around Implant Structure 45
Chapter 5 Conclusions and Future Work 48
Bibliographies 49
Appendix 52
References
[1] T.M. Cong, R.Z. Mou, M.C. Pan and C.S. Chen, 2015, “Resonance frequency confirmation for osseointegration of dental implantation in vitro models with varied cortical thickness,” Journal of Medical Devices, Transactions of the ASME, Vol. 9(3), [030945], DOI: 10/1115/1.4030599.
[2] M.G. Newman, H.H. Takei, F.A. Carranza, P.R. Klokkevold, R. Perry and A. Fermin Carranza, 2015, “Carranza’s clinical periodontology expert consult, 12th edition,” Elsevier Science Health, Philadelphia, PA, United States.
[3] F. Javed, H.B. Ahmed, R. Crespi and G.E. Romanos, 2013, “Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation,” Interventional Medicine and Applied Science, Vol. 5(4), pp. 162-167.
[4] N. Anand, S. Chandrasekaran, Y. Kovendhan and M. Alam, 2014, “Is primary stability the gold standard factor in implant success?” Dental Hypothesis, Vol. 5(2), pp. 70-74.
[5] S. Suzuki, H. Kobayashi and T. Ogawa, 2013, “Implant stability change and osseointegration speed of immediately loaded photo functionalized implants,” Implant dentistry, Vol. 22(5), pp. 481-490
[6] D. Buser, P.K. Moy, M. Dagnelid and N. Meredith., 2015, “Clinical benefits of OSSTELL in daily practice,” Osstell Co Publishing: Osstell Idx, pp. 15.
[7] K. Koretake, S. Okada, Y. Takeda, K, Doi, Y. Akagawa and K. Tsuga, 2015, “The effect of superstructures connected to implants with different surface properties on the surrounding bone,” Journal of Functional Biomaterials, Vol. 6(3), pp. 623-633.
[8] G. Cesaretti, D. Botticelli, A. Renzi, M. Rossi, R. Rossi and N.P. Lang, 2015, “Radiographic evaluation of immediately loaded implants supporting 2 – 3 units fixed bridges in the posterior maxilla: A 3 – year follow – up prospective randomized controlled multicenter clinical study,” Clinical Oral Implants Research, Vol. 27(4), pp. 399-405.
[9] S. Chakrapani, M. Goutham, T. Krishnamohan, S. Anuparthy, N. Tadiboina and S. Rambha, 2015, “Periotest values: Its reproducibility, accuracy, and variability with hormonal influence,” Contemporary Clinical Dentistry, Vol. 6(1), pp. 12-15.
[10] B.X. Hsieh, C.S. Chen and M.C. Pan, 2014, "Numerical Characterization of Bone Defects after Dental Implantation", Journal of Medical Devices, Transactions of the ASME, Vol. 8, pp. 1-2.
[11] M. Hayashi, C. Kobayashi, H. Ogata, M. Yamaoka and B. Ogiso, 2010, “A non-contact vibration device for measuring implant stability,” Clinical Oral Implants Research, Vol. 21, pp. 931-936.
[12] W. Li, D. Lin, R. Chaiy, S. Zhou and S. Michael and Q. Li, 2011, “Finite Element Based Bone Remodeling and Resonance Frequency Analysis for Osseointegration,” Finite Elements in Analysis and Design, Vol. 47, pp. 898-905.
[13] S. Wang, G.R. Liu, K.C. Hoang and Y. Guo, 2010, “Identifiable range of osseointegration of dental implants through resonance frequency analysis,” Medical Engineering & Physics, Vol. 32, pp. 1094-1096.
[14] Joel Häggström, 2007, “Vibrations during Resonance Frequency Analysis of Dental Implant Stability,” Thesis in Biomedical Engineering: Signals and Systems, Chalmers University of Technology, Göteborg, Sweden, No. EX104.
[15] M. Atsumi, S.H. Park and H.L. Wang, 2007, “Method used to assess implant stability current status,” International Journal Maxillofacial Implants, Vol. 22(5), pp. 743-754.
[16] Osstell AB, http://www.osstell.com/upl_files/25020-7%20mentor%20Q&A.pdf, (Acc. 2007.11.01).
[17] J. He and Z.F. Fu, 2001 “Modal Analysis,” Butterworth-Heinemann, Oxford.
[18] Dr. C. M. Ramesha, K. G. Abhijith, Abhinav Singh, Abhishek Raj and Chetan S Naik, 2015, “Modal Analysis and Harmonic Response Analysis of a Crankshaft,” International Journal of Emerging Technology and Advanced Engineering, ISSN 2250-2459, ISO 9001:2008, Vol. 5, Issue 6.
[19] NASTRAN, “Chapter 3: Real Eigenvalue Analysis,” Mechanical Rochester Education.
[20] Ray W. Clough and Joseph Penzien, 1995, “Dynamics of structures, 3rd edition,” Computers & Structures, Inc., Berkeley, CA 94704, United States.
[21] Bin Xun Hsieh, 2013, “Numerical characterization of osseointegration and bone defects after dental implantation,” Thesis in Biomedical Science & Engineering, National Central University (NCU), Taiwan.
[22] ANSYS Structural Analysis Guide, “Chapter 4: Harmonic Response Analysis,” http://www.ansys.stuba.sk/html/guide_55/g-str/GSTRToc.htm, Disclaimer of Warranty and Liability, United States.
[23] Kurowski M. Paul, 2012, “Engineering analysis with solidworks simulation,” Schroff Development Corporation.
[24] H.M. Stephen and Isabelle Dufour, 2015, “Resonant MEMS – Fundamentals, implementation and application, 1st edition,” Wiley-VCH Verlag GmbH & Co. KGaA.
[25] R. Yahiaoui and A. Bosseboeuf, 2001, “Improved modelling of the dynamical behavior of cantilever microbeams,” Proceedings, Micromechanics and Microsystems Europe Conference, MME, Cork, Ireland, pp. 281-284.
[26] Warren C. Young and Richard G. Budynas, 2002, “Roark’s formulas for stress and strain, 7th edition,” McGraw-Hill, New York, ISBN 0-07-072542-X.
[27] C. James et al, 1912, “The book of cyclopedia of architecture, carpentry and building volume 1-3,” American Technical Society.
[28] M. Paz et al., 2004, “Structural Dynamics, Chapter 15: Dynamic Analysis of Structures Using the Finite Element Method,” Kluwer Academic Publishers.
[29] Logan L. Daryl, 2010, “A first course in the finite element method, 5th edition,” University of Wisconsin, Copyright by Cengage Learning, Platteville, United States.
[30] M. Ali Saglar, 2009, “Development of a finite element analysis program for structural dynamics applications,” Thesis in Faculty of Graduate College of the Oklahoma State University.
[31] Pacific Research Laboratories (SAWBONES®), 2016, "Biomechanical test material", Orthopedic catalog, Division of Pacific Research Laboratories, Inc., pp. 77-78.
[32] Trinh Minh Cong, 2015, “Study on the effect of cortical shell structure and varied tooth situations to the resonance frequencies in dental implantation,” Dissertation in Biomedical: Qualification Examination, Science & Engineering, National Central University (NCU), Taiwan (R.O.C).
[33] C. Holberg, R.J. Ingrid, A. Wichelhaus and P. Winterhalder, 2013, “Ceramic inlays: Is the inlay thickness an important factor influencing the fracture risk?” Journal of Dentistry, Elsevier B.V. Science Direct, Vol. 41, pp. 628-635.
[34] Pacific Research Laboratories (SAWBONES®), 2016, "Biomechanical test material", Orthopedic catalog, Division of Pacific Research Laboratories, Inc., pp. 77-78.
[35] H. Isaksson, C.C. van Donkelaar, R. Huiskes and K. Ito, 2006, “Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in-vivo results,” Journal of Orthopedic Research, Vol. 20118, DOI 10.1002.
[36] C.J. Percival and J.T. Richtsmeier, 2017, “Building bone: bone formation and development in Anthropology,” Cambridge University Press, United Kingdom, ISBN: 978-1-107-12278-9.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔