(34.237.52.11) 您好!臺灣時間:2021/05/18 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李沅銘
研究生(外文):Yuan-Ming Li
論文名稱:出磺坑背斜沉積與熱史研究
論文名稱(外文):A depositional and thermal history study of Chuhuangkeng anticline
指導教授:蔡龍珆蔡龍珆引用關係
指導教授(外文):Louis Loung-Yie Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:應用地質研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:190
中文關鍵詞:出磺坑背斜沉積環境岩象分析X光繞射鏡煤素反射率核飛跡定年熱歷史
外文關鍵詞:Chuhuangkeng anticlineDepositional environmentPetrographyX-ray diffractionVitrinite reflectanceFission track datingthermal history
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
新生代中新世晚期開始的造山運動在臺灣西部形成前陸盆地,而區域性的快速抬升構造活動進一步形成出磺坑背斜。由於具有適當的構造封閉條件與有機質成熟度達到油窗,部分儲集層依然保有良好之油氣潛能。本研究目的為藉由評估此區域之沉積與熱史了解前陸盆地演化為背斜之過程,並且進一步提供油氣生成與移棲之沉積過程和年代資料。樣本採自出磺坑背斜出露地層與探採鑽井井下地層,實驗方法結合薄片岩象分析、X光繞射(XRD)、鏡煤素反射率與核飛跡定年分析。岩象分析與XRD結果指出出磺坑背斜地層礦物組成主要為石英(49-89%),部分為岩屑(9-48%)及長石(0-4%)並且從上新世至更新世之間開始接收造山帶材料(變質岩岩屑)。結合岩象分析之沉積古氣候條件、XRD結果之黏土礦物組成以及伊萊石化學風化指數,結果指出此區域中新世時期高嶺石的增加,指示為濱面帶沉積並且古氣候環境條件相對濕潤,以化學風化作用為主,而整個地層層序經歷多次之沉積循環。伊萊石結晶度趨勢不明顯,無法看出造山材料的進入,僅能用來區分地層。井下樣本鏡煤素反射率(0.71-1.69%)與深度呈正相關,代表樣本最大受熱溫度主控因素為深埋作用,計算之古地溫梯度範圍為40°C/km ~ 24°C/km,推估出磺坑背斜構造抬升與剝蝕作用約2.5公里。鋯石核飛跡定年顆粒集合年代約為103.7 Ma,沉積物來源與中國東南方之早白堊紀末-晚白堊紀初時期之火山活動(120-80 Ma)相關,而結合鏡煤素反射率與磷灰石核飛跡分析資料,形成出磺坑背斜之構造抬昇與地表剝蝕作用從4 Ma開始直到現在,切穿出磺坑背斜中心處的後龍溪流域發育則早於卓蘭層之沉積年代。
Chuhuangkeng anticline which located at NW Taiwan had been a major oil and gas producing field in the past. Rapid uplift caused by local tectonic activity thus formed the Chuhuangkeng anticline in the foreland basin. Because of its favorable tectonic trapping and organic maturation had reached oil window, the reservoir rocks still possess good HC potential. The purpose of this study is to understand the evolution of foreland basin, it is crucial to evaluate the depositional and thermal history of sedimentary basin and further knowing the generation and migration of oil and gas. Sequences of outcrop and borehole samples were collected in this study. Various analytical methods including XRD, petrographic thin section, vitrinite reflectance, and fission track analysis were combined to examine depositional and thermal history of the foreland basin which evolved to anticline. The results of petrographic and XRD analysis indicate that mineral composition in Chuhuangkeng anticline sequence is mostly quartz (49-89%), some lithic fragments (9-48%) and feldspar (0-4%). It had experienced series of cyclothems and started receiving orogenic sediments during Plio-Pleistocene. However, illite crystallinity has an unclear trend in Chuhuangkeng anticline sequence duo to the complicate evolution environment of foreland basin. Furthermore, organic maturation exhibits linear correlation with depth in boreholes (Ro=0.71~1.45%), which indicates that burial was the main controlling factor of thermal history. The calculated paleogeothermal gradient ranges from 40°C/km to 24°C/km, and the converted thickness of tectonic rift and exhumation is about 2.5 km. Moreover, pooled age of zircon fission track (PL-CL) is about 103.7 Ma, the origin of sediments is related to volcanic activity during lower Cretaceous to upper Cretaceous (120-80 Ma) in southeastern China. Integration of data from vitrinite reflectance and apatite fission track analysis indicates tectonic uplift process started from 4 Ma until now. Finally, the development of Houlong river should be earlier than the deposition of Cholan Formation, across central part of Chuhuangkeng anticline.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
一、緒論 1
1.1 研究動機與目的 1
1.2 研究區域地質概述 2
1.3 內文概述 13
二、文獻回顧 14
2.1 沉積盆地之熱史研究 14
2.2 沉積盆地之沉積物來源區指示 15
2.2.1 沉積物來源區年代 15
2.2.2 沉積物來源區地體構造類型 17
2.3 沉積盆地之沉積環境與埋藏深度 19
2.4 沉積盆地之地層剝蝕年代 21
三、研究方法 24
3.1 研究流程 24
3.2 岩石薄片之沉積岩岩象 24
3.3 X光粉末繞射分析(XRD) 26
3.4 鏡煤素反射率 31
3.5 鋯石核飛跡定年 33
3.6磷灰石核飛跡定年 36
四、研究結果與討論 38
4.1沉積岩岩象分析結果 38
4.2礦物組成、沉積物來源區地體構造類型和沉積環境指示 44
4.3 X光粉末繞射(XRD)結果 47
4.4伊萊石結晶度結果 54
4.5鏡煤素反射率結果 56
4.6鋯石核飛跡定年結果 65
4.7磷灰石核飛跡定年結果 71
4.8出磺坑背斜南北向沉積至構造抬升演化 77
4.9研究結果小結 79
4.10研究結果討論 80
五、結論 93
六、參考文獻 96
七、附錄 110
附錄A-各地層樣本鏡煤素反射率數點結果 110
附錄B-各地層樣本碎屑鋯石核飛跡定年結果表格及照片 125
中國石油公司(CPC),1994,臺灣西部地質圖,苗栗圖幅(1:100000)。中國石油公司臺灣油礦探勘總務編印。
王玲絲,2012,苗栗地區儲集層孔隙率與滲透率特性評估。國立中央大學應用地質研究所碩士論文,共88頁。
安藤昌三郎,1930,臺灣苗栗油田之地質及構造。地質學雜誌,第37卷,第447期,第799-803頁。
何信昌,1994,臺灣地區五萬分之一地質圖及說明書第12號:苗栗圖幅。經濟部中央地質調查所出版,共69頁。
何春蓀,1986,臺灣地質概論-臺灣地質圖說明書。經濟部中央地質調查所,共169頁。
何春蓀、耿文溥,1953,臺灣新竹北埔至苗栗南莊間地質礦產。臺灣省地質調查所彙刊,第4號,第1-19頁。
李錦發,2000,五萬分之一臺灣地質圖說明書-圖幅第十八號苗栗。經濟部中央地質調查所出版,共117頁。
周南、劉聰桂,1997,核飛跡(FT)定年法。地質,第16卷,第1-2期,第97-111頁。
林朝棨,1935,台中豐原地方第三紀及第四紀地層之地層研究。台北帝國大學理農學部紀要,第13卷,第3期,第13-30頁。
林朝棨,1954,台灣之地形。台灣新誌,中國文化事業出版委員會。
邱華燈、徐兆祥,1963,苗栗縣錦水背斜地下地質。臺灣石油地質,第2號,第253-270頁。
胡忠恆,1995,臺灣地質概論;臺灣貝類化石誌。自然科學博物館,第4卷,第19冊,共112頁。
原振維,1981,臺灣中西部井下火成岩體之放射性定年。探採研究彙報,第4期,第20篇,第363-366頁。
郝騤,1957,錦水氣田地下地質之研究及其與出磺坑構造兩翼地層剖面之對比。臺灣石油地質討論會論文專輯,第85-110頁。
郝騤、蕭寶宗,1957,苗栗通宵背斜構造之地質研究。中國石油公司成立十週年紀念論文專輯,第128-139頁。
張益生,1994,臺灣西南部麓山帶上部中新統至更新統砂岩岩象與黏土礦物之分析及其構造意義。國立臺灣大學地質學研究所碩士論文,共86頁。
張麗旭,1951,「三叉衝上斷層」及其附近之地質構造。臺灣省地質調查所彙刊,第3號,第23-33頁。
張麗旭,1959,臺灣西部中新世地層之基於小型有孔蟲之生物地層學研究(其一:浮游性有孔蟲)。中國地質學會會刊,第2號,第2期,第47-72頁。
張麗旭、何春蓀,台灣台中縣大安背斜之構造。地質評論,第13卷,第1-2期,第157-158頁。
莊恭周,1982,苗栗出磺坑構造中新統之黏土礦物分析。探採研究彙報(中國石油公司),第5期,第91-99頁。
莫慧偵、沈俊卿、張錦澤、林政遠、林麗華、孫智賢,2011,井下樣品及資料分析。探採研究彙報,第33期,第14篇,第81-86頁。
郭政隆,1997,鏡煤素反光率在台灣西部油氣探勘的應用。國立臺灣大學博士論文,共302頁。
陳文山,2016,臺灣地質概論。中華民國地質學會,共204頁。
陳文山、王源、楊昭男,1994,依沉積岩象特性建立從穩定大陸到弧陸碰撞造山帶環境的演化模式。中國地質學會83年年會論文摘要,第83-87頁。
陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰桂、洪崇勝、謝凱旋、葉明官、吳榮章、柯烔德、林清正、黃能偉,2000,上-更新世臺灣西部前陸盆地的演化:沉積層序與沉積物組成的研究。經濟部中央地質調查所彙刊,第13號,第137-156頁。
陳振華、陳文山、王源、陳勉銘,1992,由臺灣中部前陸砂岩之岩象研究看褶皺逆衝帶之剝蝕歷史。地質,第12卷,第2期,第147-165頁。
陳培源,2006,臺灣地質。臺灣省應用地質技師公會,共526頁。
鳥居敬造,1935,東勢圖幅及說明書。臺灣總督府殖產局,第732號,共26頁。
游能悌、鄧屬予,1995,出磺坑剖面中新統的岩相與沉積環境。地質,第15卷,第1期,第127-151頁。
楊世閎,2016,臺灣西北部出磺坑背斜石油系統研究。國立中央大學應用地質研究所碩士論文,共67頁。
戴柏青、林維倫、鄧屬予,1994,北海岸五指山層的沉積環境。地質,第14卷,第2期,第129-156頁。
謝凱旋、黃敦友,2003,臺灣第三系的地層層序。臺灣礦業,第55卷,第2期,第17-32頁。
顏滄波、陳培源,1953,台北圖幅-五萬分之一臺灣地質圖第10號。臺灣省地質調查所出版,共16頁。
Barker, C. E., and R. H. Goldstein., 1990. Geology, 18(10), 1003-1006.
Basu, A., S. W. Young., L. J. Suttner., W. C. James., and G. H. Mack., 1975. Reevaluation of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation, Journal of Sedimentary Petrology, 45, 873-882.
Bernet, M., M. T. Brandon., J. I. Garver., P. W. Reiners., and P. G. Fitzgerald., 2002. Determining the zircon fission-track closure temperature. GSA Cordilleran Section, 98th annual meeting, Abstract with Programs, 34, 18.
Bernet, M., and J. I. Garver., 2005. Fission-track analysis of detrital zircon. Mineralogical Society of America, 58, 205-238.
Boggs, S., 2006. Principles of sedimentology and stratigraphy (Fourth edition). Upper Saddle River, N. J., Pearson Prentice Hall, 662 pp.
Brandon, M. T., and J. A. Vance., 1992. New statistical methods for analysis of fission track grain-age distributions with applications to detrital zircon ages from the Olympic subduction complex, western Washington State. American Journal of Science, 292, 565-636.
Brandon, M. T., M. K. Roden-Tice., and J. I. Garver., 1998. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State, GSA Bull, 110, 985-1009.
Brandon, M. T., 2002. Decomposition of mixed grain age distributions using BINOMFIT, On Track, 24, 13-18.
Briais, A., P. Patriat., and P. Tapponnier., 1993. Updated interpretation of magnetic anomalies and sea-floor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia, Journal of Geophysics Research, 98, 6299-6328.
Burnham, A. K., and J. J. Sweeney., 1989. A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 53, 2649-2657.
Chen, W. S., K. D. Ridgway., C. S. Horng., Y. G. Chen., K. S. Shea., M. G. Yeh., 2001. Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan. Bulletin of geological society of America, 113, 1249-1271.
Chou, J. T., 1970. A stratigraphic and sedimentary analysis of the Miocene in northern Taiwan. Petroleum Geology of Taiwan, 7, 145-189.
Clifton, H. E., 1988. Sedimentologic approaches to paleobathymetry, with applications to the Merced Formation of central California. Palaios, 3, 507-522.
Dickinson, W. R., 1974. Plate tectonics and sandstone composition. Special Publication of Society of Economic Paleontologists and Mineralogists, 22, 1-27.
Dickinson, W. R., and C. Suczek., 1979. Plate tectonics and sandstone composition. American Association of Petroleum Geologists Bulletin, 63, 2164-2182.
Dickinson, W. R., 1982. Composition of sandstones in circum-Pacific subduction complexes and fore-arc basins. American Association of Petroleum Geologists Bulletin, 66, 121-137.
Dickinson, W. R., L. S. Beard., G. R. Brakenridge., J. L. Erjavec., R. C. Rerguson., K. F. Inman., R. A. Knepp., F. A. Lindberg., and P. T. Ryberg., 1983. Provenance of North American Phanerozic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222-235.
Dickinson, W. R., 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G. G. (Ed.), Provenance of Arenites. Reidel Publ., Dordrecht, 333-361.
Dodson, M. H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259-274.
Donelick, R. A., P. B. O’Sullivan., and R. A. Ketcham., 2005. Apatite fission-track analysis. Reviews in Mineralogy & Geochemistry, 58, 49-94.
Droser, M. L., and D. J. Bottjer., 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology, 16, 233-236.
Duane, M., and R. Brown., 1991. Tectonic brines and sedimentary basins: further application of fission-track analysis in understanding Karoo Basin evolution (South Africa). Basin research, 3, 187-195.
Elliott, T., 1986. Siliciclastic shorelines, In: Reading, H. G. (ed.), Sedimentary Environments and Facies, 2nd ed., Blackwell, 155-188.
Emmerich, A., U. A. Glasmacher., F. Bauer., T. Bechstädt., and R. Zülke., 2005. Meso-Cenozoic basin and carbonate platform development in the SW-Dolomites unraveled by basin modelling and apatite FT analysis: Rosengarten and Latemar (Northern Italy). Sedimentary Geology, 175, 415-438.
Esquevin, J., 1969. Influence de la composition chimique des illites sur cristallinite, Bulletin of Centre Rech. Rau SNPA, 3, 147-153.
Fitzgerald, P. G., R. B. Sorkhabi., T. F. Redfield., and E. Stump., 1995. Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission track termochronology to determine absolute uplift parameters. Journal of Geophysical Research, 100, 20175-20191.
Fleischer, R. L., P. B. Price., and R. M. Walker., 1975. Nuclear tracks in solids: principles and applications. University of California Press, Berkeley, 605 pp.
Foster, D. A., B. P. Kohn., and A. J. W. Gleadow., 1996. Sphene and zircon fission track closure temperatures revisited: empirical calibrations from 40Ar/39Ar diffusion studies on K-feldspar and biotite. International Workshop on Fission Track Dating, Abstracts, Gent 37.
Frey, M., 1987. Very low grade metamorphism of clastic sedimentary rocks. In: Frey M, editor. Low-temperature metamorphism. Glasgow: Blackie, 9-58.
Galbraith, R. F., 1990. The radial plot: Graphical assessment of spread in ages. International Journal of Radiation Applications and Instrumentation Part D, Nuclear Tracks and Radiation Measurements, 17(3), 207-214.
Gallagher, K., R. Brown., and C. Johnson., 1998. Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Science, 26, 519-572.
Garver, J. I., M. T. Brandon., M. K. Roden-Tice., and P. J. J. Kamp., 1999. Erosional denudation determined by fission-track ages of detrital apatite and zircon. In: Ring. U., M. T. Brandon., S. Willett., and G. Lister. (eds) Exhumation Processes: Normal Faulting, Ductile Flow, and Erosion. Geological Society, London, Special Publications, 154, 283-304.
Gibbard, P. L., and M. J. Head., 2009. IUGS ratification of the Quaternary system/period and the Pleistocene Series/Epoch with a base at 2.58 Ma. Quaternaire, 20(4), 411-412
Gleadow, A. J. W., and J. F. Lovering., 1974. Effect of weathering on fission track dating. Earth and Planetary Science Letters, 22, 163-168.
Gleadow, A. J. W., and I. R. Duddy., and J. F. Lovering., 1983. Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. The APEA Journal, 23, 93-102.
Gleadow, A. J. W., and I. R. Duddy., and J. F. Lovering., 1986. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94, 405-415.
Gleadow, A. J. W., and C. Seiler., 2014. Fission track dating and thermochronology. Encyclopedia of Scientific Dating Methods, 1-17.
Green, P. F., I. R. Duddy., A. J. W. Gleadow., and J. F. Lovering., 1989. Apatite fission track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Naeser, N. D., and T. H. Mcculloh. (eds) Thermal History of Sedimentary Basins: Methods and Case Histories. Springer, New York, 181-195.
Green, P. F., I. R. Duddy., and G. M. Laslett., 1988. Can fission track annealing in apatite be described by first order kinetics? Earth and Planet Science Letters, 87, 216-228.
Green, P. F., I. R. Duddy., and K. A. Hegarty., 2002. Quantifying exhumation from apatite fission-track analysis and vitrinite reflectance data: precision, accuracy and latest results from the Atlantic margin of NW Europe. In: Dore, A. G., J. A. Stoker., J. P. Turner., and N. White. (eds) Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration. Geological Society, London, Special Publications, 196, 331-354.
Green, P. F., I. R. Duddy., and K. A. Hegarty., 2005. Comment on “Compositional and structural control of fission track annealing in apatite”. Chemical Geology, 214, 351-358.
Harrison, T. M., R. L. Armstrong., C. W. Naeser., and J. E. Harakal., 1979. Geochronology and thermal history of the Coast Plutonic Complex, near Prince Rupert, British Columbia. Canadian Journal of Earth Sciences, 16, 400-410.
Hayes, J. B., 1962. Clay mineralogy of Mississippian strata of southeast Iowa. Clay and Clay Minerals, 10(1), 413-425.
Ho, C. S., 1986. An introduction to the geology of Taiwan explanatory text of the geologic map of Taiwan. Central Geological Survey MOEA, R.O.C. 160 pp.
Hurford, A. J., 1986. Cooling and uplift patterns in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology, 92, 413-427.
Hurford, A. J., and P. F. Green., 1983. The zeta calibration of fission-track dating. Isotope Geoscience, 1, 285-317.
Hurford, A. J., F. J. Fitch., and A. Clark., 1984. Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geological Magazine, 121(4), 269-277.
Johns, W. D., R. E. Grim., and W. F. Bradly., 1954. Quantitative estimations of clay minerals by diffraction methods. Journal of Sedimentary Petrology, 24, 242-251.
Kamp, P. J. J., and P. F. Green., 1990. Thermal and tectonic history of selected Taranaki Basin (New Zealand) wells assessed by apatite fission track analysis. AAPG Bulletin, 74, 1401-1419.
Ketcham, R. A., 2013. HeFTy version 1.8.0, Manual.
Kübler, B., and M. Jaboyedoff., 2000. Illite crystallinity. Earth and Planetary Sciences, 331, 75-89.
Leithold, E. L., and J. Bourgeois., 1984. Characteristics of coarse-grained sequences deposited in nearshore, wave-dominated environments-examples from the Miocene of southwest Oregon. Sedimentology, 31, 749-775.
Li, Z. X., and X. H. Li., 2007. Formation of the 1300-km-wide intracontinental orogeny and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35, 179-182.
Li, Z. X., X. H. Li., S. L. Chung., C. H. Lo., X. Xu., and W. X. Li., 2012. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics, 532-535, 271-290.
Lin, A. T., A. B. Watts., 2002. Origin of the West Taiwan by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9), 2185.
Lin, A. T., A. B. Watts., and S. P. Hesselbo., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15, 453-478.
Lisker, F., B. Ventura., and U. A. Glasmacher., 2009. Apatite thermochronology in modern geology. Geological Society, London, Special Publications, 324, 1-23.
Liu, T. K., 1982. Tectonic implication of fission track ages from the Central Range, Taiwan. Proc Geol Soc China, 25, 22-37.
Logan, P. and I. R. Duddy., 1998. An investigation of the thermal history of the Ahnet-Reggane basins, central Algeria, the consequences for hydrocarbon generation accumulation. In: MacGregor, D. S., R. T. J. Moody., and D. D. Clark-Lowes. (eds) Petroleum Geology of North Africa. Geological Society, London, Special Publications, 132, 131-155.
MacKenzie, W. S., and A. E. Adams., 1994. A color atlas of rocks and minerals in thin section, Manson Publishing, 192 pp.
Magoon, L. B., and W. G. Dow., 1994. The Petroleum System, in L. B. Magoon and W. G. Dow, eds., The petroleum system – From source to trap. American Association of Petroleum Geologists Memoir 60, 3-24.
McCubbin, D. G., 1982. Barrier-island and strand-plain facies In: Scholle, P. A. and Spearing D. (eds.), Sandstone Depositional Environments. Memoir American Association of Petroleum Geologists, 31, 247-279.
Mitchell, M. M., 1997. Elevated mid-Cretaceous paleotemperatures in the western Otway Basin: consequences for hydrocarbon generation models. The APPEA journal, 37, 505-523.
Moore, D. M., and R. C., Jr. Reynolds., 1997. X-ray Diffraction and the identification and analysis of clay minerals, 2ed. Oxford University Press, New York, 378 pp.
Naeser, N. D., P. K. Zeitler., C. W. Naeser., and P. F. Cerveny., 1987. Provenance studied by fission track dating of zircon-etching and counting procedures. Nuclear Tracks and Radiation Measurements, 13, 121-126.
Nesse, W. D., 1991. Introduction to optical mineralogy, Oxford University Press, 335 pp.
Pevear, D. R., 1999. Illite and hydrocarbon exploration. Proceedings of the National Academy of Science, USA, 96, 3440-3446.
Seward, D. and D. A. Rhoades., 1986. A clustering technique for fission track dating of fully to partially annealed minerals and other non-unique populations. Nucl Tracks Radiat Meas, 11, 259-268.
Simpson, E. L. and K. A. Eriksson., 1990. Early Cambrian progrdational and transgressive sedimentation patterns in Virginia: an example of the early history of a passive margin. Journal of Sedimentary Petrology, 60, 84-100.
Suttner, L. J., and P. K. Dutta., 1986. Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. Journal of Sedimentary Research, 56(3), 329-345.
Teng, L. S., 1979. Petrographical study of Neogene sandstones of the Coastal Range, eastern Taiwan (1. Northern part). Acta Geol. Taiwan, 20, 353-364.
Underdown, R., J. Redfern., and F. Lisker., 2007. Constraining the burial history of the Ghadames Basin, North Africa: an integrated analysis using sonic velocities, vitrinite reflectance data and apatite fission track ages. Basin Research, 19(4), 557-578.
Verdel, C., N. Niemi., and B. A. ver der Pluijm., 2011. Variations in the illite to muscovite transition related to metamorphic conditions and detrital muscovite content: insight from the Paleozoic passive margin of southwestern United States. Journal of Geology, 119, 419-437.
Wagner, G. A. and G. M. Reimen., and E. Jager., 1977. Cooling ages derived by apatite fission-track, mica Rb-Sr, and K-Ar dating: The uplift and cooling history of the Central Alps. Padava, societa Cooperative Topografica, 25 pp.
Wagner, G. A., 1981. Fission-track ages and their geological interpretation. Nuclear Tracks, 5(1/2), 15-25.
Weaver, C. E., 1960. Possible uses of clay minerals in search for oil. American Association of Petroleum Geologists Bulletin, 9, 1505-1518.
Wu, H. C., H. I. Yang., and T. F. Chou., 1983. Petrography of the igneous rocks beneath the Chiayi coastal plain, central western Taiwan. Petroleum Geology of Taiwan, 19(5), 77-91.
Yim, W. W. S., A. J. W. Gleadow., and J. C. Van Moort., 1985. Fission track dating of alluvial zircons and heavy mineral proveance in northeast Tasmania. Proc Soc London, 142, 351-356.
Yu, S. B., and H. Y. Chen., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
Yuan, J. W., and S. T. Huang., 1987. Fission track dating of zircons in the late Cenozoic sedimentary rock in the Miaoli area, Taiwan. Petroleum Geology of Taiwan, 23(3), 41-53.
Yue, L. F., and L. S. Teng., 2000. Sedimentary facies and depositional cycles of the Mushan Formation. Bulletin of central geological survey, 13, 157-194.
Yui, T. F., L. Heaman., and J. Xu., 1996. U-Pb and Sr isotopic studies on granitoids from Taiwan and Chinmen-Lieyu and tectonic implications. Tectonophysics, 263, 61-76.
Zaun, P. E., and G. A. Wagner., 1985. Fission-track stability in zircons under geological conditions. Nuclear Tracks, 10, 303-307.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top