跳到主要內容

臺灣博碩士論文加值系統

(54.227.97.219) 您好!臺灣時間:2021/12/01 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李盈家
研究生(外文):Lee-Ying-Chia
論文名稱:以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為
論文名稱(外文):Ni-(20~40 at. %) W alloyed micro features prepared by MAGE process and their electrolytic behavior of hydrogen production in the alkaline solution
指導教授:林景崎
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:150
中文關鍵詞:微電鍍鎳鎢合金產氫
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中使用微陽極導引電鍍(Microanode-guided electroplating, MAGE)來製造鎳鎢合金微結構。電鍍製程中改變鍍浴酸鹼值(6.0~7.5)與溫度(60 °C~75 °C)等條件對析鍍鎳鎢合金微結構表面形貌、化學組成、結晶構造、機械性質等之影響。表面形貌以冷場發射掃描式電子顯微鏡觀測,晶體構造以X光繞射儀分析。電鍍過程監測析鍍電流,並對產物秤重,以計算電流效率。結果顯示: 鍍浴pH 在7.5、溫度75 °C時,所產出的鎳鎢合金微結構具較平滑表面,鎢含量可達37 at.%。
若以鎳鎢合金作為鹼性溶液電解產氫的陰極時,由於其氫還原的交換電流密度高、氫過壓低,因而成為當前產氫的熱門陰極材料。本論文以MAGE所製造出來的鎳鎢合金微結構,以循環伏安法、計時電位法、Tafel極化分析法來檢測此合金在鹼性水溶液中的產氫表現。結果顯示:含37 at.% W的鎳鎢合金微結構,具有最大的交換電流密度(6.01  10-1 mA/cm2),最小的Tafel slope (80 mV/dec)。計時電位法之結果顯示,含38 at.% W的合金微柱在1.0 M KOH溶液中,以定電流-300mA/cm2經過六小時的電解產氫,其電位始終維持在-0.30±0.07 V,並無明顯的漂移,顯示此材料相當穩定,是鹼性水溶液電解產氫及有潛力之候選材料。
Micro-anode guided electrodeposition (MAGE) process was used to fabricate three-dimensional (3-D) micro features of Ni-W alloys in this work. The effect of pH value (from 6.0 to 7.5) and the bath temperature (60~75 °C) on the surface morphology, chemical composition, crystallographic microstructure and mechanical property was investigated. The surface morphology was observed through SEM and the chemical composition determined by EDS; the crystallographic microstructure phase was examined by XRD. The micro feature was weighed and compared to the overall electrical quantity evaluated by integration of the current with time to calculate the cathodic current efficiency. As a result, the Ni-W micro features containing 37 at.% W in smooth surface was attained in a 75 °C-bath with pH of 7.5.
Nickel-tungsten alloy is known as a good cathode material used to produce hydrogen gas by means of electrolysis in the alkaline water solution because of high exchange current density and low overvoltage of the hydrogen evolution reaction (HER). Micro features of the Ni-W alloys from MAGE were investigated in terms of cyclic voltammetry (CV), chronoamperometry (CP) and Tafel polarization to study their cathodic behavior of water electrolysis. The alloy containing 37 at.% W resulted from the MAGE in the 75 °C-bath with pH of 7.5 revealed the best HER efficiency. It demonstrated the highest exchange current density (6.01 x 10-1 mA/cm2) and lowest Tafel slope (80 mV/dec). The chronopotentiometry of the 37 at.% W alloy conducted at- 300 mA/cm2 in1.0 M KOH displayed a stable potential at -0.30±0.07 V without showing any significant shift within 6 hours. This fact indicates that this material is a stable and excellent cathode candidate for HER in the alkaline electrolysis.
摘要 i
Abstract ii
目錄 iv
圖目錄 xi
表目錄 xx
第一章、 前言 1
1-1 全球能源使用近況 1
1-1-1 Power-to-gas 技術 1
1-2 水解產氫的介紹 2
1-3 電解水電極材料發展 2
1-4 研究動機與目的 3
第二章、 文獻回顧與基礎理論 5
2-1 鹼性水溶液中的產氫原理 5
2-2 不同鎢含量之鎳鎢合金對於在鹼性水溶液中產氫反應的影響 6
2-3 電鍍原理 7
2-4 合金電鍍 9
2-4-1 規則共鍍 (regular codeposition) 10
2-4-2 誘導共鍍(induced codeposition)之鐵族與鎢金屬共鍍: 10
2-5 在檸檬酸鹽鍍液中加入氨水對於鎳鎢合金成分的影響 14
2-6 鍍浴中無添加氨水時不同酸鹼值下對於析鍍鎳鎢合金之影響 14
2-7 鍍浴中無添加氨水時不同析鍍溫度下對於析鍍鎳鎢合金之影響 15
2-8 法拉第效率 16
2-9 鎳鎢合金之陰極極化曲線 17
2-10 鎳鎢合金之結晶相 18
2-11 局部電化學微製造技術之發展 19
2-12 微奈米實驗室微電鍍之研究歷程 21
第三章、 實驗方法 23
3-1 實驗流程 23
3-2 電鍍之實驗設備 23
3-3 陰陽極製備 25
3-4 鍍浴組成 26
3-5 微陽極導引電鍍法 26
3-6 鎳鎢合金之表面形貌觀察與組成分析 27
3-7 晶體結構分析 27
3-8 奈米壓痕試驗 28
3-9 法拉第效率計算 30
3-10 陰極極化曲線測量 30
3-11 Comsol之電場模擬方式與設定 31
3-12 產氫裝置設置 31
3-13 循環伏安法 32
3-14 定電壓收集氫氣法 32
3-15 計時電位法 33
3-16 產氫極化曲線與Tafel參數 33
第四章、 結果 35
4-1 不同酸鹼值鍍浴所得之鎳鎢合金差異 35
4-1-1 表面形貌與柱徑 35
4-1-2 成分分析 36
4-1-3 晶體結構 36
4-1-4 微硬度分析 37
4-1-5 析鍍電流與析鍍速率 37
4-1-6 導電度與電場強度 38
4-1-7 極化曲線 38
4-1-8 微柱重量與法拉第效率 39
4-2 不同鍍浴溫度所得之鎳鎢合金差異 39
4-2-1 表面形貌與柱徑 39
4-2-2 成分分析 40
4-2-3 晶體結構 41
4-2-4 析鍍電流與析鍍速率 41
4-2-5 導電度 42
4-2-6 極化曲線 42
4-2-7 微柱重量與法拉第效率 43
4-3 鎳鎢合金之循環伏安法 43
4-3-1 改變酸鹼值之差異 44
4-3-2 改變析鍍溫度之差異 44
4-4 定電壓排水集氫氣法 45
4-4-1 改變酸鹼值之差異 45
4-4-2 改變析鍍溫度之差異 46
4-5 產氫下之極化曲線 47
4-6 計時電位法 48
4-7 產氫後之鎳鎢合金表面形貌 49
4-7-1 改變酸鹼值之差異 49
4-7-2 改變析鍍溫度之差異 49
4-8 產氫前後之鎳鎢成分分析 49
4-8-1 改變析鍍酸鹼值之差異 49
4-8-2 改變析鍍溫度之差異 50
第五章、 討論 51
5-1 改變鍍浴酸鹼值對析鍍微柱組成之影響 51
5-2 改變鍍浴酸鹼值對析鍍微柱之XRD晶體結構與微柱外觀之關係 51
5-3 改變鍍浴酸鹼值對硬度之影響 53
5-4 改變鍍浴酸鹼值之導電度、電場強度、平均析鍍電流、析鍍速率與微柱直徑之關係 53
5-5 改變鍍浴酸鹼值之極化曲線解析 54
5-6 改變鍍浴酸鹼值對法拉第效率之影響 55
5-7 改變鍍浴溫度對析鍍微柱組成之影響 56
5-8 變鍍浴溫度對析鍍為柱之XRD晶體結構、微柱外觀與析鍍速率之關係 56
5-9 改變鍍浴溫度對導之導電度、平均析鍍電流、析鍍速率與微柱直徑之關係 57
5-10 改變鍍浴溫度之極化曲線解析 58
5-11 改變鍍浴溫度對法拉第效率的影響 59
5-12 產氫效能分析 60
5-12-1 改變鎢含量的影響 60
5-12-2 改變析鍍溫度的影響 64
5-13 產氫前後外觀與成分差異討論 65
5-14 產氫效能比較 66
第六章、 結論與未來展望 67
1. Energy, G.," CO2 status Report," IEA (International Energy Agency): Paris, France 2019.
2. Eberle, U., Müller, B., and Von Helmolt, R.," Fuel cell electric vehicles and hydrogen infrastructure: status 2012," Energy Environmental Science, 5(10): pp. 8780-8798, 2012.
3. Züttel, A., Remhof, A., Borgschulte, A., and Friedrichs, O.," Hydrogen: the future energy carrier," Philosophical Transactions of the Royal Society A: Mathematical, Physical Engineering Sciences
368(1923): pp. 3329-3342, 2010.
4. Khan, M.A., Zhao, H., Zou, W., Chen, Z., Cao, W., Fang, J., Xu, J., Zhang, L., and Zhang, J.," Recent progresses in electrocatalysts for water electrolysis," Electrochemical Energy Reviews, 1(4): pp. 483-530, 2018.
5. Jaksic, J.M., Ristic, N.M., Krstajic, N.V., and Jaksic, M.M.," Electrocatalysis for hydrogen electrode reactions in the light of fermi dynamics and structural bonding FACTORS—I. individual electrocatalytic properties of transition metals," International journal of hydrogen energy, 23(12): pp. 1121-1156, 1998.
6. Stoney, G.G.," The tension of metallic films deposited by electrolysis," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82(553): pp. 172-175, 1909.
7. Vij, V., Sultan, S., Harzandi, A.M., Meena, A., Tiwari, J.N., Lee, W.-G., Yoon, T., and Kim, K.S.," Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions," Acs Catalysis, 7(10): pp. 7196-7225, 2017.
8. Brown, D., Mahmood, M., Man, M., and Turner, A.J.E.A.," Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions," 29(11): pp. 1551-1556, 1984.
9. Gong, M., Wang, D.-Y., Chen, C.-C., Hwang, B.-J., and Dai, H.," A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction," Nano Research, 9(1): pp. 28-46, 2016.
10. Vernickaite, E., Tsyntsaru, N., Sobczak, K., and Cesiulis, H.," Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium," Electrochimica Acta, 318: pp. 597-606, 2019.
11. O’Brien, T.F., Bommaraju, T.V., and Hine, F., Overview of the chlor-alkali industry, Handbook of Chlor-Alkali Technology, Springer,2005.
12. Clemente, L.R.,On the Fabracation of Three-Dimensional Nickel-Zinc alloys by Electroplating and Their Performance of Hydrogen Evolution in Alkaline Water Electrolysis,中央大學,碩士論文,2020
13. Ahn, S.H., Choi, I., Park, H.-Y., Hwang, S.J., Yoo, S.J., Cho, E., Kim, H.-J., Henkensmeier, D., Nam, S.W., and Kim, S.-K.," Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis," Chemical communications, 49(81): pp. 9323-9325, 2013.
14. Kawashima, A., Akiyama, E., Habazaki, H., and Hashimoto, K.," Characterization of sputter-deposited Ni-Mo and Ni-W alloy electrocatalysts for hydrogen evolution in alkaline solution," Materials Science Engineering: A, 226: pp. 905-909, 1997.
15. Latyshev, V., Vorobiov, S., Shylenko, O., and Komanicky, V.," Screening of electrocatalysts for hydrogen evolution reaction using bipolar electrodes fabricated by composition gradient magnetron sputtering," Journal of Electroanalytical Chemistry, 854: pp. 113562, 2019.
16. Jiang, L., Ji, S.-J., Xue, H.-G., and Suen, N.-T.," HER activity of MxNi1-x (M= Cr, Mo and W; x≈ 0.2) alloy in acid and alkaline media," International Journal of Hydrogen Energy, 2020.
17. Nsanzimana, J.M.V., Peng, Y., Miao, M., Reddu, V., Zhang, W., Wang, H., Xia, B.Y., and Wang, X.," An earth-abundant tungsten–nickel alloy electrocatalyst for superior hydrogen evolution," ACS Applied Nano Materials, 1(3): pp. 1228-1235, 2018.
18. Oliver-Tolentino, M.A., Arce-Estrada, E.M., Cortés-Escobedo, C.A., Bolarín-Miro, A.M., Sánchez-De Jesús, F., González-Huerta, R.d.G., and Manzo-Robledo, A.," Electrochemical behavior of NixW1− x materials as catalyst for hydrogen evolution reaction in alkaline media," Journal of alloys compounds, 536: pp. S245-S249, 2012.
19. Hong, S.H., Ahn, S.H., Choi, J., Kim, J.Y., Kim, H.Y., Kim, H.-J., Jang, J.H., Kim, H., and Kim, S.-K.," High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis," Applied Surface Science, 349: pp. 629-635, 2015.
20. Wang, M., Wang, Z., Guo, Z., and Li, Z.," The enhanced electrocatalytic activity and stability of NiW films electrodeposited under super gravity field for hydrogen evolution reaction," international journal of hydrogen energy, 36(5): pp. 3305-3312, 2011.
21. Tasić, G.S., Lačnjevac, U., Tasić, M.M., Kaninski, M.M., Nikolić, V.M., Žugić, D.L., and Jović, V.D.," Influence of electrodeposition parameters of Ni–W on Ni cathode for alkaline water electrolyser," international journal of hydrogen energy, 38(11): pp. 4291-4297, 2013.
22. Jaksic, M.M.," Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions," nternational journal of hydrogen energy, 26(6): pp. 559-578, 2001.
23. Jakšić, M.M.," Hypo–hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions," Electrochimica Acta, 45(25-26): pp. 4085-4099, 2000.
24. Jaksic, M.M.," Interionic nature of synergism in catalysis and electrocatalysis," Solid State Ionics, 136: pp. 733-746, 2000.
25. Elias, L., Scott, K., Hegde, A.C.J.J.o.M.E., and Performance," Electrolytic synthesis and characterization of electrocatalytic Ni-W alloy," 24(11): pp. 4182-4191, 2015.
26. Sheng, W., Myint, M., Chen, J.G., and Yan, Y.," Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces," Energy Environmental Science, 6(5): pp. 1509-1512, 2013.
27. Tan, A., Tin and Solder plating in the semiconductor industry, Springer Science & Business Media,1992.
28. Brenner, A., Electrodeposition of Alloys: Practical and specific information, Vol. 2. Academic Press,1963.
29. Elias, L., Scott, K., and Hegde, A.C.," Electrolytic synthesis and characterization of electrocatalytic Ni-W alloy," Journal of Materials Engineering Performance, 24(11): pp. 4182-4191, 2015.
30. Vaaler, L.E. and Holt, M.," Codeposition of tungsten and nickel from an aqueous ammoniacal citrate bath," Transactions of the Electrochemical Society, 90(1): pp. 43, 1946.
31. Clark, W.E. and Lietzke, M.," The mechanism of the tungsten alloy plating process," Journal of The Electrochemical Society, 99(6): pp. 245, 1952.
32. Fukushima, H., Akiyama, T., Akagi, S., and Higashi, K.," Role of iron-group metals in the induced codeposition of molybdenum from aqueous solution," Transactions of the Japan Institute of Metals, 20(7): pp. 358-364, 1979.
33. Podlaha, E. and Landolt, D.," Induced Codeposition II. A Mathematical Model Describing the Electrodeposition of Ni‐Mo Alloys," Journal of the Electrochemical Society, 143(3): pp. 893-899, 1996.
34. Podlaha, E. and Landolt, D.," Induced codeposition III. Molybdenum alloys with nickel, cobalt, and iron," Journal of the Electrochemical Society, 144(5): pp. 1672-1680, 1997.
35. Podlaha, E., Matlosz, M., and Landolt, D.J.J.o.t.E.S.," Electrodeposition of High Mo Content Ni‐Mo Alloys under Forced Convection," 140(10): pp. L149, 1993.
36. Cruywagen, J.J., Krüger, L., and Rohwer, E.A.," Complexation of tungsten (VI) with citrate," Journal of the Chemical Society, Dalton Transactions(7): pp. 1727-1731, 1991.
37. Perrin, D.," Stability constants of metal-ion complexes. 1979," IUPAC Chemical Data Series(22 Part B),
38. Younes, O. and Gileadi, E.," Electroplating of high tungsten content Ni/W alloys," Electrochemical and solid state letters, 3(12): pp. 543, 2000.
39. Younes, O., Zhu, L., Rosenberg, Y., Shacham-Diamand, Y., and Gileadi, E.," Electroplating of amorphous thin films of tungsten/nickel alloys," Langmuir 17(26): pp. 8270-8275, 2001.
40. Eliaz, N. and Gileadi, E., Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals, in Modern aspects of electrochemistry. 2008, Springer. p. 191-301.
41. Younes-Metzler, O., Zhu, L., and Gileadi, E.," The anomalous codeposition of tungsten in the presence of nickel," Electrochimica Acta, 48(18): pp. 2551-2562, 2003.
42. Younes, O. and Gileadi, E.," Electroplating of Ni/W alloys I. Ammoniacal citrate baths," Journal of The Electrochemical Society, 149(2): pp. C100-C111, 2002.
43. Sridhar, T., Eliaz, N., and Gileadi, E.," Electroplating of Ni4 W," Electrochemical solid-state letters, 8(3): pp. C58-C61, 2005.
44. Park, J.-S., Jeong, G.-J., Kim, Y.-J., Kim, K.-J., and Lee, C.-K.," A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film," Journal of the Korean institute of surface engineering, 44(2): pp. 68-73, 2011.
45. Kim, W.-B., Lee, C.-G., Lee, J.-C., and Seo, C.-Y.," Effect of Current Density on the Crystal Structure of Ni-W Alloys Prepared by Electrodeposition," Korean Journal of Materials Research, 8(10): pp. 898-904, 1998.
46. Yamasaki, T., Schloβmacher, P., Ehrlich, K., and Ogino, Y.," Formation of amorphous electrodeposited Ni-W alloys and their nanocrystallization," Nanostructured Materials, 10(3): pp. 375-388, 1998.
47. Yamasaki, T., Tomohira, R., Ogino, Y., Schlossmacher, P., and Ehrlich, K.," Formation of ductile amorphous and nanocrystalline Ni-W alloys by electrodeposition," Plating Surface Finishing, 87(5): pp. 148-152, 2000.
48. Yamasaki, T., Schloβmacher, P., Ehrlich, K., and Ogino, Y.," Formation of amorphous electrodeposited Ni-W alloys and their nanocrystallization," Nanostructured Materials, 10(3): pp. 375-388, 1998.
49. Yamasaki, T., Schloßmacher, P., Ehrlich, K., and Ogino, Y. "Nanocrystallization and Mechanical Properties of an Amorphous Electrodeposited Ni75W25 Alloy". Materials science forum.975-980, 1998.
50. Ohno, I.," Electrochemistry of electroless plating," Materials Science and Engineering: A, 146(1-2): pp. 33-49, 1991.
51. Slavcheva, E., Mokwa, W., and Schnakenberg, U.," Electrodeposition and properties of NiW films for MEMS application," Electrochimica Acta, 50(28): pp. 5573-5580, 2005.
52. Madden, J.D., Lafontaine, S.R., and Hunter, I.W. "Fabrication by electrodeposition: building 3D structures and polymer actuators". MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE.77-81, 1995.
53. Hunter, I.W., Lafontaine, S.R., and Madden, J.D., Three dimensional microfabrication by localized electrodeposition and etching,Editor^Editors. 1997, Google Patents.
54. El-Giar, E. and Thomson, D. "Localized electrochemical plating of interconnectors for microelectronics". IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings.327-332, 1997.
55. Said, R.," Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling," Nanotechnology, 14(5): pp. 523, 2003.
56. Seol, S., Yi, J., Jin, X., Kim, C., Je, J., Tsai, W., Hsu, P., Hwu, Y., Chen, C., and Chang, L.," Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition," Electrochemical Solid State Letters, 7(9): pp. C95, 2004.
57. Seol, S.K., Pyun, A.R., Hwu, Y., Margaritondo, G., and Je, J.H.," Localized electrochemical deposition of copper monitored using real‐time x‐ray microradiography," Advanced Functional Materials, 15(6): pp. 934-937, 2005.
58. Seol, S.K., Kim, J.T., Je, J.H., Hwu, Y., and Margaritondo, G.," Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition," Electrochemical Solid State Letters, 10(5): pp. C44, 2007.
59. Lee, C.-Y., Lin, C.-S., and Lin, B.-R.," Localized electrochemical deposition process improvement by using different anodes and deposition directions," Journal of Micromechanics Microengineering, 18(10): pp. 105008, 2008.
60. Wang, F., Xiao, H., and He, H.," Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns," Scientific reports, 6: pp. 26270, 2016.
61. Wang, F., Wang, F., and He, H.," Parametric electrochemical deposition of controllable morphology of copper micro-columns," Journal of The Electrochemical Society, 163(10): pp. E322, 2016.
62. 葉柏青,微陽極引導電鍍與監測,中央大學,碩士論文,2002
63. 張庭綱,微陽極導引電鍍法製作微銅柱及銅柵欄之研究,中央大學,碩士論文,2004
64. 鄭家宏,以微陽極導引電鍍法製作鎳銅合金微柱,中央大學,碩士論文,2005
65. 黃俊強,微電鍍法之製程參數對其製備鎳鐵合金微柱特性之影響,中央大學,碩士論文,2010
66. 張翔,銅鎳合金微結構之微電鍍研究,中央大學,碩士論文,2018
67. 吳冠勳,以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究,中央大學,碩士論文,2019
68. Eliaz, N., Sridhar, T., and Gileadi, E.," Synthesis and characterization of nickel tungsten alloys by electrodeposition," Electrochimica Acta, 50(14): pp. 2893-2904, 2005.
69. Bastug, A.S., Gokturk, S., and Sismanoglu, T.," 1: 1 Binary complexes of citric acid with some metal ions: Stability and thermodynamic parameters," Reviews in Inorganic Chemistry, 27(1): pp. 53-65, 2007.
70. Vamsi, M., Wasekar, N.P., and Sundararajan, G.," Influence of heat treatment on microstructure and mechanical properties of pulse electrodeposited Ni-W alloy coatings," Surface Coatings Technology, 319: pp. 403-414, 2017.
71. 魏明通, 分析化學, Vol. 2. 五南圖書,2014.
72. Allahyarzadeh, M., Aliofkhazraei, M., Rezvanian, A., Torabinejad, V., and Rouhaghdam, A.S.," Ni-W electrodeposited coatings: characterization, properties and applications," Surface Coatings Technology, 307: pp. 978-1010, 2016.
73. Shinagawa, T., Angel T. Garcia-Esparza, and Takanabe, K.," Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion," Scientific reports, 5: pp. 13801, 2015.
74. Scholz, F., Electroanalytical methods, Vol. 1. Springer,2010.
75. Fan, C., Piron, D., Sleb, A., and Paradis, P.," Study of Electrodeposited Nickel‐Molybdenum, Nickel‐Tungsten, Cobalt‐Molybdenum, and Cobalt‐Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis," Journal of the Electrochemical Society, 141(2): pp. 382, 1994.
76. González Buch, C., Herraiz Cardona, I., Ortega Navarro, E.M., García-Antón, J., and Pérez-Herranz, V.," Development of Ni-Mo, Ni-W and Ni-Co macroporous materials for hydrogen evolution reaction," Chemical Engineering Transactions, 32: pp. 865-870, 2013.
77. Metikoš-Huković, M., Grubač, Z., Radić, N., and Tonejc, A.," Sputter deposited nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution," Journal of Molecular Catalysis A: Chemical, 249(1-2): pp. 172-180, 2006.
78. Park, J.-S., Jeong, G.-J., Kim, Y.-J., Kim, K.-J., and Lee, C.-K.J.J.o.t.K.i.o.s.e.," A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film," 44(2): pp. 68-73, 2011.
79. Said, R.J.N.," Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling," 14(5): pp. 523, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top