(100.26.176.182) 您好!臺灣時間:2019/12/12 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:杜葉倫
研究生(外文):Yeh-Lun Du
論文名稱:基於網路流量拓撲之雲端平台虛擬叢集配置策略
論文名稱(外文):Placing Virtual Clusters on Cloud Platform Based on Inter-VMs Network Traffic
指導教授:王尉任王尉任引用關係
指導教授(外文):Wei-Jen Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程學系在職專班
學門:工程學門
學類:電資工程學類
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:52
中文關鍵詞:雲端運算虛擬叢集資源配置排程機制
外文關鍵詞:Cloud computingVirtual ClusterResource ProvisioningScheduling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雲端運算的發展日益成熟,與虛擬化技術廣泛的使用密不可分。透過虛擬化技術能讓實體機器能承載多部虛擬機器,讓運算資源使用能夠更有彈性,隨著雲端運算應用的快速發展,雲端運算的計算量和複雜度也在不斷提高,單一虛擬機器提供服務已無法滿足需求,虛擬叢集是由多個虛擬機器所組成,透過虛擬網路的連結協同運算以完成提供特定服務。資源配置問題在雲端運算是其中之一項重要的研究議題。目前現行的雲端平台資源排程機制,大多將虛擬叢集中的虛擬機器視為單獨的虛擬機器而未考慮它們之間的關聯性,因此在資源使用上可能造成運算環境的效能不佳。不同的虛擬叢集有者不同的資源使用特性,如何選擇一個適合的調度策略讓虛擬叢集執行更有效率,進行資源配置時就需要先考慮虛擬叢集的資源使用特性。在這篇論文中,我們實作了一個虛擬叢集配置到雲端平台的模擬程式,提供一個可重複及可控制的測試環境。針對通訊密集型的虛擬叢集,提出一個基於網路流量拓撲的排程策略,目標是減少實體網路頻寬使用量。並與常見的虛擬叢集排程策略FCFS 、 Round-Robin和虛擬叢集切割演算法作模擬測試比較,實驗結果顯示,我們提出的虛擬叢集排程策略相比其他傳統的排程策略實體網路頻寬使用量最少,有助於減少實體網路負載。
The use of virtualization technology allows software-based virtual machines to be able to run on a physical machine, which makes resource allocation on a cloud environment more flexible. With the fast development of the cloud computing technology, clusters of virtual machines become more popular in many applications, such as Hadoop cluster. A virtual cluster is composed by multiple virtual machines, which perform collaborative computing tasks through virtual networks on top of physical networks. Resource allocation for virtual clusters is a key issue to be solved on cloud. It is different from the single VM placement problem. First, all VMs of a cluster share the physical network bandwidth on cloud, and some of them may talk to each other very often. Second, physical network bandwidth consumption among two VMs can be turned into internal memory read/write operations if two VMs are placed at the same physical machine. Most existing scheduling mechanisms only consider/use the single virtual machine placement strategy, instead of the virtual cluster placement strategy. Therefore those VM placement algorithms/mechanisms may lead to poor performance since they do not consider the communication relationship among the VMs. In this paper, we propose a novel scheduling strategy for virtual clusters based on Inter-VMs network traffic. We have compared the simulation performance in terms of physical network usage of the proposed algorithm with existing algorithms such as FCFS, Round-Robin, and the Divide-Aware algorithm. The simulation results indicate that the proposed scheduling algorithm consumes the smallest physical network bandwidth. As a result, the proposed algorithm can reduce the possibility of performance degradation due to physical network bandwidth contention.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1-1 前言 1
1-2 問題與實作目標 2
1-3 論文貢獻 2
1-4 論文架構 3
第二章 相關研究 4
2-1 背景知識 4
2-1-1 雲端運算 4
2-1-2 虛擬叢集 5
2-1-3 虛擬化技術簡介 6
2-1-4 虛擬化產品簡介 8
2-1-5 網路虛擬化技術簡介 9
2-2 相關研究與系統排程 11
2-2-1 HPC-Aware VM Placement in Infrastructure Clouds 11
2-2-2 Resource Scheduling and Data Locality for Virtualized Hadoop on IaaS Cloud Platform 12
2-2-3 Virtual Machine Provisioning Based on Analytical Performance and QoS in Cloud Computing Environments 12
2-2-4 Efficient Resource Provisioning for Virtual Clusters on the Cloud 13
第三章 Network Topology-aware Deployment Strategy for Virtual Cluster 14
3-1 設計動機 14
3-2 網路拓撲的基本概念 15
3-3 虛擬叢集排程策略的問題定義 15
3-4 虛擬叢集排程策略 17
3-4-1 Virtual Cluster 常見排程策略 17
3-4-2 虛擬叢集分割演算法 21
3-4-3 Network Topology-aware Algorithm 23
第四章 實驗環境與量測 28
4-1 實驗設計與情境假設 28
4-2 實驗案例與結果 30
4-2-1 實驗一: 4組不同的虛擬叢集分別以不同排程策略模擬配置 30
4-2-2 實驗二:由不同數量的 VMs所組成的虛擬叢集分別以不同排程策略模擬配置 32
第五章 結論 38
第六章 未來研究方向 39
參考資料 40
[1] R. Buyya, C. Vecchiola and S. T. Selvi, Mastering cloud computing: foundations and applications programming. USA: Morgan Kaufmann, 2013.
[2] I. Foster, Y. Zhao and I. Raicu, "Cloud Computing and Grid Computing 360-Degree Compared," in Proceedings of Grid Computing Environments Workshop (GCE '08), Austin, TX, USA, pp. 1-10, Nov. 2008.
[3] Y. Jadeja and K. Modi, "Cloud Computing-Concepts, Architecture and Challenges," in the proceedings of International Conference on Computing Electronics and Electrical Technologies (ICCEET), Nagercoil, India, pp. 877-880, March, 2012.
[4] S. Nanda and T.-c. Chiueh, "A survey on virtualization technologies," Stony Brook University, Tech. Rep. TR-179, Feb, 2005.
[5] F. Rodrguez-Haro, F. Freitag, L. Navarro, E. Hernnchez-snchez, N. Faras-Mendoza, J. A. Guerrero-Ibez and A. Gonzlez-Potes, "A Summary of Virtualization Techniques," The 2012 Iberoamerican Conference on Electronics Engineering and Computer Science Elsevier Procedia Technology, vol. 3, pp. 267-272, 2012.
[6] "Citrix XenServer," [Online]. Available: https://www.citrix.com/products/xenserver/. [Accessed 30 Sep. 2017].
[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield, "Xen and the Art of Virtualization," in Proceedings of the 19th ACM Symposium on Operating Systems Principles, New York, USA, pp. 164-177, 2003.
[8] "VMware Virtualization," [Online]. Available: https://www.vmware.com/tw.html. [Accessed 10 Sep. 2017].
[9] "Hyper-V," Microsoft, [Online]. Available: https://social.technet.microsoft.com/wiki/contents/articles/261.understanding-and-comparing-the-hyper-v-v1-0-and-v2-0-architecture.aspx. [Accessed 30 Sep. 2017].
[10] P. Mell and T. Grance,“The NIST definition of cloud computing,” National Institute of Standards and Technology, Gaithersburg, Maryland, Special Publication 800-145, 2011.
[11] "Amazon Elastic Compute Cloud (Amazon EC2)," Amazon Web Services, Inc. [Online]. Available: http://aws.amazon.com/ec2/. [Accessed 30 Sep. 2017].
[12] D. Robinson, Amazon Web Services Made Simple: Learn how Amazon EC2, S3, SimpleDB and SQS Web Services enables you to reach business goals faster. London, UK, UK: Emereo Pty Ltd, 2008.
[13] "Google Cloud Platform," [Online]. Available: https://cloud.google.com/compute/. [Accessed 30 Sep. 2017].
[14] "Microsoft Azure," Microsoft, [Online]. Available: http://azure.microsoft.com/zh-tw/. [Accessed 30 Sep. 2017].
[15] "Google App Engine," [Online]. Available: https://cloud.google.com/appengine/. [Accessed 30 Sep. 2017].
[16] W. Odom, Cisco CCENT/CCNA ICND1 100-101 Official Cert Guide, Indianapolis, USA: Cisco Press, 2013.
[17] "Generic Routing Encapsulation (GRE)," Cisco, [Online]. Available: https://learningnetwork.cisco.com/blogs/vip-perspectives/2017/03/14/anatomy-of-gre-tunnels. [Accessed 20 Oct. 2017].
[18] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka and T. Turletti, "A survey of software-defined networking: Past present future of programmable networks," IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617-1634, Feb. 2014.
[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker and J. Turner, "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, April 2008.
[20] A. Gupta, L. V. Kalé, D. Milojicic, P. Faraboschi and S. M. Balle, "HPC-Aware VM Placement in Infrastructure Clouds," in Proceedings of the 2013 IEEE International Conference on Cloud Engineering, Redwood City, CA, USA, pp. 11-20, Mar. 2013.
[21] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose and R. Buyya, "CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms," Software: Practice and Experience (SPE), vol. 41, no. 1, pp. 23-50, 2011.
[22] D. Tao, B. Wang, Z. Lin and T.-Y. Wu, "Resource Scheduling and Data Locality for Virtualized Hadoop on IaaS Cloud Platform," in Proceedings of Big Data Computing and Communications: Second International Conference, BigCom 2016, Shenyang, China, pp. 332-341, 2016.
[23] "Welcome to Apache™ Hadoop," [Online]. Available: http://hadoop.apache.org/. [Accessed 20 Oct. 2017].
[24] R. N. Calheiros, R. Ranjan and R. Buyya, "Virtual Machine Provisioning Based on Analytical Performance and QoS in Cloud Computing Environments," in 2011 International Conference on Parallel Processing (ICPP), Taipei City, Taiwan, pp. 295-304, Sep. 2011.
[25] S.-J. Chen , C.-C. Chen , H.-L. Lu and W.-J. Wang, "Efficient Resource Provisioning for Virtual Clusters on the Cloud," in 2015 International Conference on Platform Technology and Service, Jeju, Korea, 2015.
[26] H.-L. Lu,“Efficient Resource Provisioning for Virtual Cluster Deployment Based on Network Workload,”M.S. thesis, National Central University, Taoyuan City, Taiwan, 2014.
[27] Y. Chawla and M. Bhonsle, "A Study on Scheduling Methods in Cloud Computing," International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), vol. 1, no. 3, pp. 12-17, Sep.-Oct. 2012.
[28] T. Aleena Xavier and R. Rejimoan, "Survey on various resource allocation strategies in cloud," in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1-4, Mar. 2016.
[29] "Dev-C++ Blog," [Online]. Available: http://orwelldevcpp.blogspot.tw/. [Accessed 2 May 2017].
[30] "Network topology - Wikipedia," [Online]. Available: https://simple.wikipedia.org/wiki/Network_topology. [Accessed 30 Sep. 2017].
[31] "RUBiS - Home Page," [Online]. Available: http://rubis.ow2.org/. [Accessed 25 Oct. 2017].
電子全文 電子全文(網際網路公開日期:20210416)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔