跳到主要內容

臺灣博碩士論文加值系統

(3.233.242.204) 您好!臺灣時間:2021/09/26 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊惠
研究生(外文):Chun-Hui Lin
論文名稱:二維強耦合微粒電漿方向序的時空尺度律
論文名稱(外文):Spatial Temporal Scaling of the Bond-orientational Order in the Quasi Two-dimensional Strongly Coupled Dusty Plasma
指導教授:伊林伊林引用關係
指導教授(外文):Lin I
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:71
中文關鍵詞:方向序微粒電漿缺陷
外文關鍵詞:bond-orientational orderdusty plasmadefect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
測量一個系統的整齊度是一個非常有趣的課題。一個整齊的系統一定有某一種對稱性。根據一個系統的對稱性,可以量測此系統的整齊度。在一個強耦合庫侖微粒電漿系統中,粒子會形成六角晶格結構,每一個粒子被六個鄰近的粒子圍繞。這樣的晶格結構有晶格週期性和角向對稱性,而且可以經由調節適當的系統參數來使晶格溶解成液態。這個論文裡主要的課題是討論在液態中,強耦合庫侖微粒電漿系統的方向序,包括:(1)時空尺度律、(2)時空尺度律與粒子在時空運動的關聯、(3)時間尺度律與空間尺度律的關聯。

How to determine the degree of order of a system is a very interesting problem. An ordered system must have some kind of symmetry. According to the symmetry of the structure, we can measure the order of the system. In the strongly coupled Coulomb dusty plasma system, the two-dimensional Wigner crystal can be formed. A Wigner crystal has the hexagonal structure, and each particle is surrounded by six nearest adjacent particles. Such crystal has crystalline periodicity and rotational symmetry. The crystal in the dusty plasma can be melted by decreasing the coupling constant Г, which can be controlled by the rf power or gas pressure. The main topic of this work is to study the orientational ordering of the liquid state in the strongly coupled dusty plasma system. It includes: (1) The spatial temporal scaling of the bond-orientational order parameter (2) The correlation between the spatial temporal scaling and the dynamical response of the particle motion in space and time (3) The correlation between the spatial and temporal scaling.

Ch1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Ch2. Background and Theory
2.1 Dusty plasma system . . . . . . . . . . . . . . . . . . . . . . . .4
2.2 Measurement of system order . . . . . . . . . . . . . . . . 12
2.3 Transition from order to disorder . . . . . . . . . . . . . .23
Ch3. Experiment
3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Ch4. Result and Discussion
4.1 A hot liquid state . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 A hot liquid state . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 MD simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Ch5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

[1] J. H. Chu and Lin I, Phys. Rev. Lett. 72, 4009 (1994)
[2] J. H. Chu and Lin I, J. Appl. Phys. 74, 4741 (1993)
[3] H. Ikezi, Phys. Fluids 29, 1764 (1986)
[4] N. A. Clark, A. J. Hurd, and B. J. Ackerson, Nature (Lonton) 281, 57 (1979)
[5] D. H. Van Winkle and C. A. Murry, Phys. Rev. A 34, 362 (1986)
[6] K. Ito, H. Nakamura, and N. Ise, J. Chem. Phys. 85,6136 (1986)
[7] E. B. Sirota, H. D. Ou-Yang, S. K. Sinka, and P. M. Chaikin, Phys. Rev. Lett. 62, 1524 (1989)
[8] J. D. Wineland, J. C. Berguist, W. M. Itano, J. J. Bollinger, C. H. Manney, Phys. Rev. Lett. 59, 2935 (1987)
[9] R. Blumel, J. M. Chem, E. Peik, W. Quint, W. Schlieh, Y. R. Shen, and H. Walter, Nature 334, 309 (1988)
[10] F. Diedrich, E. Peik, W. Quint, and H. Walter, Phys. Rev. Lett. 59, 2391 (1987)
[11] J. Richard Christman, Fundamentals of Solid State Physics
[12] W. D. Kristensen, J. Non-Cryst. Solids 21, 303 (1976)
[13] Katherine J. Strandburg, Bond-Orientational Order in Condensed Matter Systems (Springer-Verlag New York, Inc 1992)
[14] Ken Bagchi, Hans C. Andersen and William Swope, Phys. Rev. Lett. 76, 2 (1996)
[15] defect
[16] J. M. Kosterlitz and D. J. Thouless, J. Phys. C, 6, 1181 (1973)
[17] N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979)
[18] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2547 (1979)
[19] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978)
[20] Katherine J. Strandburg, Reviews of Modern Physics 60, 1, (1988)
[21] K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett. 82, 13 (1999)
[22] K. Zahn and G. Maret, Phys. Rev. Lett. 85, 17 (2000)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文