|
1. Würthner, F., T.E. Kaiser, and C.R. Saha‐Möller, J‐Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angewandte Chemie International Edition, 2011. 50(15): p. 3376-3410. 2. Connolly, L.G., et al., Strong coupling in high-finesse organic semiconductor microcavities. Applied Physics Letters, 2003. 83(26): p. 5377. 3. Tani, T., et al., Local reflection micro-spectroscopy of excitons in fibril-shaped molecular J-aggregates prepared in PVA thin films. Journal of Luminescence, 2003. 102-103: p. 27-33. 4. Kasprzak, J., et al., Bose–Einstein condensation of exciton polaritons. Nature, 2006. 443(7110): p. 409-414. 5. Savona, V., et al., Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Communications, 1995. 93(9): p. 733-739. 6. Wei, H.S., et al., Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities. Optics Express, 2013. 21(18): p. 21365-21373. 7. Pradeesh, K., J. Baumberg, and G.V. Prakash, Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity. Optics express, 2009. 17(24): p. 22171-22178. 8. Schwartz, T., et al., Polariton dynamics under strong light-molecule coupling. Chemphyschem, 2013. 14(1): p. 125-31. 9. Slootsky, M., et al. Formation of hybrid polaritons in an organic-inorganic microcavity at room temperature. in CLEO: QELS_Fundamental Science. 2013. Optical Society of America. 10. Tischler, J., et al., Strong Coupling in a Microcavity LED. Physical Review Letters, 2005. 95(3). 11. Rossbach, G., et al., Impact of saturation on the polariton renormalization in III-nitride based planar microcavities. Physical Review B, 2013. 88(16). 12. Daskalakis, K.S., et al., All-dielectric GaN microcavity: Strong coupling and lasing at room temperature. Applied Physics Letters, 2013. 102(10): p. 101113. 13. Gibbs, H.M., G. Khitrova, and S.W. Koch, Exciton–polariton light–semiconductor coupling effects. Nature Photonics, 2011. 5(5): p. 273-273. 14. Chemla, D.S., Nonlinear optical properties of organic molecules and crystals. Vol. 1. 2012: Elsevier. 15. Pope, M. and C. Swenberg, Electronic processes in organic crystals and polymers, 1999. Cocchi, M. &; Virgili, D. &; Giro, G. &; Fattori, V. &; Marco, PD &; Kalinowski, J. &; Shirota, Y., Appl. Phys. Lett, 2002. 80: p. 2401. 16. Tani, T., et al., Microscopic exciton properties of fibril-shaped molecular J-aggregates prepared in ultra-thin polymer films. Journal of Luminescence, 2004. 107(1-4): p. 339-346. 17. Tani, T., et al., Anisotropic observation of absorption and fluorescence transition dipoles in exciton–polariton properties of PIC J-aggregates. Journal of Luminescence, 2007. 122-123: p. 244-246. 18. Oda, M., et al., Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates. physica status solidi (c), 2009. 6(1): p. 288-291. 19. Oda, M., et al., Fabrication, characterization and its local reflection properties of a metal-mirror microcavity with high concentrated PIC J-aggregates. Physics Procedia, 2010. 3(4): p. 1615-1620. 20. Bradley, M.S., J.R. Tischler, and V. Bulović, Layer‐by‐Layer J‐Aggregate Thin Films with a Peak Absorption Constant of 106 cm–1. Advanced Materials, 2005. 17(15): p. 1881-1886. 21. Coles, D.M., et al., Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities. Physical Review B, 2013. 88(12). 22. Christogiannis, N., et al., Characterizing the Electroluminescence Emission from a Strongly Coupled Organic Semiconductor Microcavity LED. Advanced Optical Materials, 2013. 1(7): p. 503-509. 23. Virgili, T., et al., Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity. Physical Review B, 2011. 83(24). 24. Somaschi, N., et al., Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities. Applied Physics Letters, 2011. 99(14): p. 143303. 25. Coles, D.M., et al., Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities. Advanced Functional Materials, 2011. 21(19): p. 3691-3696. 26. Coles, D.M., et al., Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity. Physical Review B, 2011. 84(20). 27. Chovan, J., et al., Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities. Physical Review B, 2008. 78(4). 28. Wenus, J., et al., Optical strong coupling in microcavities containing J-aggregates absorbing in near-infrared spectral range. Organic Electronics, 2007. 8(2-3): p. 120-126. 29. Ceccarelli, S., et al., Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities. Superlattices and Microstructures, 2007. 41(5-6): p. 289-292. 30. Lidzey, D.G., et al., Hybrid polaritons in strongly coupled microcavities: experiments and models. Journal of Luminescence, 2004. 110(4): p. 347-353. 31. Krizhanovskii, D.N., et al., Photoluminescence emission and Raman scattering polarization in birefringent organic microcavities in the strong coupling regime. Journal of Applied Physics, 2003. 93(9): p. 5003. 32. Akselrod, G.M., et al., Lasing through a strongly-coupled mode by intra-cavity pumping. Opt Express, 2013. 21(10): p. 12122-8. 33. Bradley, M.S. and V. Bulović, Intracavity optical pumping of J-aggregate microcavity exciton polaritons. Physical Review B, 2010. 82(3). 34. Akselrod, G.M., et al., Exciton-exciton annihilation in organic polariton microcavities. Physical Review B, 2010. 82(11). 35. 李正中, 薄膜光學與鍍膜技術 (第七版). 2012, 新北市: 藝軒圖書出版社. 36. Teich, M.C. and B. Saleh, Fundamentals of photonics. Canada, Wiley Interscience. 1991. 37. Lodden, G.H. and R.J. Holmes, Polarization splitting in polariton electroluminescence from an organic semiconductor microcavity with metallic reflectors. Applied Physics Letters, 2011. 98(23): p. 233301. 38. Hayashi, S., Y. Ishigaki, and M. Fujii, Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities. Physical Review B, 2012. 86(4). 39. Griffiths, D.J. and R. College, Introduction to electrodynamics. Vol. 3. 1999: prentice Hall Upper Saddle River, NJ. 40. Bertie, J.E. and S.L. Zhang, Infrared intensities of liquids. IX. The Kramers-Kronig transform, and its approximation by the finite Hilbert transform via fast Fourier transforms. Canadian Journal of Chemistry, 1992. 70(2): p. 520-531. 41. Lucarini, V., Kramers-Kronig relations in optical materials research. 2005: Springer. 42. Nitsche, R. and T. Fritz, Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: Application to organic semiconductors. Physical Review B, 2004. 70(19). 43. Beiser, A., S. Mahajan, and S.R. Choudhury, Concepts of modern physics. 2003: Tata McGraw-Hill Education. 44. Toll, J., Causality and the Dispersion Relation: Logical Foundations. Physical Review, 1956. 104(6): p. 1760-1770. 45. Tischler, J.R., et al., Solid state cavity QED: Strong coupling in organic thin films. Organic Electronics, 2007. 8(2-3): p. 94-113. 46. Butté, R. and N. Grandjean, A novel class of coherent light emitters: polariton lasers. Semiconductor Science and Technology, 2011. 26(1): p. 014030. 47. Deng, H., H. Haug, and Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of modern physics, 2010. 82(2): p. 1489. 48. Kéna-Cohen, S., S.A. Maier, and D.D.C. Bradley, Ultrastrongly Coupled Exciton-Polaritons in Metal-Clad Organic Semiconductor Microcavities. Advanced Optical Materials, 2013. 1(11): p. 827-833. 49. Chergui, M., et al., Ultra-fast polariton dynamics in an organic microcavity. EPJ Web of Conferences, 2013. 41: p. 04015. 50. Deng, H., H. Haug, and Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics, 2010. 82(2): p. 1489-1537. 51. Deveaud-Plédran, B. and K.G. Lagoudakis, Vortices in Spontaneous Bose–Einstein Condensates of Exciton–Polaritons, in Exciton Polaritons in Microcavities. 2012, Springer. p. 67-84. 52. Hagelstein, P.L., S.D. Senturia, and T.P. Orlando, Introductory applied quantum and statistical mechanics. Introductory Applied Quantum and Statistical Mechanics, by Peter L. Hagelstein, Stephen D. Senturia, Terry P. Orlando, pp. 785. ISBN 0-471-20276-2. Wiley-VCH, March 2004. Vol. 1. 2004. 53. Kéna-Cohen, S. and S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics, 2010. 4(6): p. 371-375. 54. Lodden, G.H. and R.J. Holmes, Thermally activated population of microcavity polariton states under optical and electrical excitation. Physical Review B, 2011. 83(7). 55. Mazza, L., et al., Microscopic theory of polariton lasing via vibronically assisted scattering. Physical Review B, 2013. 88(7). 56. Lodden, G.H. and R.J. Holmes, Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor. Physical Review B, 2010. 82(12). 57. Coulson, C., et al., Electrically controlled strong coupling and polariton bistability in double quantum wells. Physical Review B, 2013. 87(4). 58. Townsend, J.S., A modern approach to quantum mechanics. 2000: University Science Books. 59. Panzarini, G., et al., Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting. Physical Review B, 1999. 59(7): p. 5082. 60. Skolnick, M., T. Fisher, and D. Whittaker, Strong coupling phenomena in quantum microcavity structures. Semiconductor Science and Technology, 1998. 13(7): p. 645. 61. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, 1986. 56(9): p. 930. 62. Yokoyama, D., Molecular orientation in small-molecule organic light-emitting diodes. Journal of Materials Chemistry, 2011. 21(48): p. 19187-19202. 63. Kéna-Cohen, S. and S. Forrest, Green polariton photoluminescence using the red-emitting phosphor PtOEP. Physical Review B, 2007. 76(7). 64. 吳峻志, 高效率紅光及高效率單層全波段白光有機電激發光元件之研究, in 光電工程研究所. 2008, 國立中山大學.
|