(54.208.73.179) 您好!臺灣時間:2021/01/25 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林百顯
研究生(外文):Pai-Hsien Lin
論文名稱:不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
論文名稱(外文):Clays catalyzed the reactions between the organic polymer coagulants and disinfectants (chlorine)
指導教授:李俊福李俊福引用關係
指導教授(外文):Jiunn-Fwu Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:104
中文關鍵詞:表面催化不同表面特性黏土氯化反應消毒副產物
外文關鍵詞:organic polymercatalysischlorinationdisinfection by-products
相關次數:
  • 被引用被引用:7
  • 點閱點閱:238
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
在自來水淨水程序中,常採用高分子凝聚劑作為混凝劑或助凝劑,以提高水中懸浮微粒的去除率;並且以添加消毒劑(氯)來去除原水中之致病菌。但消毒劑(氯)會與高分子凝聚劑反應,產生致癌性的消毒副產物,對人體健康造成極大的威脅。此外,在黏土表面催化下,會促進有機化合物進行一連串反應,所以水中懸浮微粒可能提供一反應介質,催化高分子凝聚劑與消毒劑(氯)反應。
本研究以不同價數過渡金屬陽離子來改變黏土表面特性與孔隙結構,並以不同表面特性之黏土,模擬自來水原水中之懸浮微粒(黏土)。針對不同表面特性之黏土在淨水程序中,對高分子凝聚劑與消毒劑(氯)所造成的影響加以深入探討。
研究結果顯示:不同表面特性黏土(鈦-蒙特石除外)的表面積隨著交換性金屬陽離子的原子半徑減小而增加;孔隙值則隨著交換性金屬陽離子的離子半徑變小而降低。其次,利用不同表面特性黏土模擬原水懸浮微粒之氯化反應時發現,當黏土表面帶過渡性金屬陽離子時,所產生的消毒副產物生成總量與總生成物種,比黏土表面帶非過渡性金屬陽離子多,且隨著反應時間的延長,消毒副產物生成總量也會隨著增加。含過渡金屬陽離子黏土之系統經氯化反應後,以二氯甲烷和氯仿增加最為明顯。在反應系統中氯化反應過程添加抑制劑,發現抑制劑可明顯降低黏土催化能力,使得消毒副產物生成總量和生成物種減少。
During the drinking water purification process, synthetic organic polymers are usually used as coagulants or coagulant aids to enhance the removal rates of suspended solids. Until this time, chlorine was used to kill or inactivate pathogenic organisms in the form of a solution. However, the surfaces of these suspended solids which are composed of natural clays, could possibly provided a powerful reactive medium in which the reactions between adsorbed polymers and disinfectants (chlorine) could occur, which resulted in producing a variety of disinfection by-products (DBPs). In this study, the influences of surface characteristics of clays on chlorination of organic polymer coagulants in drinking water purification were investigated.
Clays with transition metals were obtained by exchanging the original cations of Ca2+-montmorillonites by Ti4+, Fe3+, Cu2+, Mn2+ cations. The experimental data demonstrated the wide diversity of metal-clay complexes for the catalysis of DBPs. In the simulated drinking water purification processes, clays with transition metals catalyzed the reactions between the organic polymer coagulants and disinfectants (chlorine), forming a large number of DBPs than clays with no charges in the interlayers. Transition-metal clays catalyzed the chlorination reactions formed a large number of DBPs than non-transition metal clays. The source of exchangeable ion played an important role on the catalytic ability of clays. When strong chelating agent were added, the formation of DBPs was significantly inhibited, demonstrating the important function of transition metal on the clays. A pronounced tendency was noted in this work, the total formation amounts of DBPs significantly increased with increasing reaction time and catalytic potential.
第一章 前言…………………………………………………………..1
1-1 研究緣起…………………………………………………….1
1-2 研究目的與內容…………………………………………….2
第二章 文獻回顧……………………………………………………..3
2-1 黏土礦物、高分子凝聚劑與消毒劑(氯)之關係……………4
2-2 表面反應…………………………………………………….5
2-3 黏土表面化學反應………………………………………….5
2-3-1 黏土表面各種狀態…………………………………..5
2-3-2 影響黏土表面反應的因子…………………………..7
2-4 黏土礦物與有機物間之作用……………………………….8
2-4-1 氧化反應和電荷轉移反應…………………………..9
2-4-2 氧化聚合反應………………………………………..10
2-4-3 重排反應……………………………………………..11
2-4-4 水解反應……………………………………………..12
2-4-5 其 它………………………………………………..12
2-5 消毒劑(氯)與高分子凝聚劑反應之相關研究…………….13
2-5-1 氯與水中有機污染物之反應………………………..13
2-5-2 高分子凝聚劑的應用與潛在問題…………………..16
2-5-3 消毒劑(氯)與高分子凝聚劑之反應………………...19
2-6 飲用水中消毒副產物的管制…………………………..…...20
2-6-1 美 國………………………………………………..21
2-6-2 日 本………………………………………………..25
2-6-3 加拿大………………………………………………..26
2-6-4 澳 洲………………………………………………..27
2-6-5 世界衛生組織………………………………………..28
2-6-6 台 灣………………………………………………..29
第三章 實驗設備、材料與方法………………..……………………..31
3-1 實驗流程………………………….…………………………31
3-2 實驗設備……………………………….……………………31
3-3 實驗材料………………………………….…………………35
3-4 含過渡金屬陽離子黏土備製……………………………….36
3-5 不同表面特性黏土性質分析………………….……………39
3-5-1 不同表面特性黏土交換性金屬陽離子含量………..39
3-5-2 不同表面特性黏土表面積、孔隙值及孔隙大小測定…………………………………………………….43
3-5-3 土壤有機碳測定……………………………………..43
3-6 水中餘氯測定……………………………………………….45
3-7 水中揮發性有機物分析…………………………………….47
3-8 GC/MS調機…………………………………………….…...51
第四章 結果與討論…………………………………………………..54
4-1 土樣基本性質………………………………………….……54
4-1-1 黏土上過渡金屬陽離子置換率……………………..54
4-1-2 BET表面積、孔徑值與孔徑體積………………..…55
4-2 不同表面特性黏土之消毒副產物生成總量……………….58
4-2-1 消毒副產物之定性定量……………………………..58
4-2-2 黏土表面催化消毒副產物生成機制………………..61
4-2-3 非過渡金屬陽離子黏土之消毒副產物生成總量…..62
4-2-4 過渡金屬陽離子黏土之消毒副產物生成總量……..65
4-3 不同表面特性黏土之消毒副產物物種…………………….70
4-3-1 含非過渡金屬陽離子黏土之消毒副產物物種……..70
4-3-2 過渡金屬陽離子黏土之消毒副產物物種………..…78
4-3-3 二氯甲烷和氯仿之生成機制………………………..87
4-4 抑制劑添加對黏土氯化反應之影響……………………….90
4-4-1 抑制劑添加對消毒副產物生成量之影響…………..90
4-4-2 抑制劑添加對消毒副產物生成物種之影響………..93
第五章 結論與建議…………………………………………………..95
參考文獻………………………………………………………………..97
1. Lee, J. F.; Liao, P. M.; Tseng, D. H. and Wen, P. T. (1998),〝Behavior of Organic Polymers in Drinking Water Purification,〞Journal of Chemosphere, 37(6), pp.1045-1061.
2. Davis, J. A. and Hayes, K. F. (1986),〝Geochemical Processes at Mineral Surfaces,〞American Chemical Society, Washington, DC.
3. Voudrias, E. A. and Reinhard, M. (1986),〝Abiotic Organic Reactions at Mineral Surfaces,〞Amer. Chem. Soc. Sympos. Ser, 323, pp.462-486.
4. Sawhney, B. L. (1985),〝Vapor-Phase Sorption and Polymerization of Phenols by Smectite in Air and Nitrogen,〞Clays. Clay Minerals, 33 (2), pp.123-127.
5. 李敏華 (1988),〝水質化學,〞復漢出版社.
6. Rook, J. J. (1974),〝Formation of Haloforms During Chlorination of Natural Water,〞Water Treatment Exam., 23(3), pp.234-239.
7. Christman, R. F.; Norwood, D. L.; Millington, D. S. and Johnson, J. D. (1983),〝Identity and Yields of Major Halogenated Products of Aquatic Fulvic Acid Chlorination,〞Environ. Sci. Technol., 17(10), pp.625-631.
8. Johmson, J. D. and Jensen, J. N. (1986),〝The THM and TOX Formation Routes, Rates, and Precursors,〞J. Am. Wat. Wks Ass., 78(4), pp.156-162.
9. Mallevialle, J.; Bruchet, A. and Fiessinger, F. (1984),〝How Safe Are Organic Polymers in Water Treatment ?,〞Jouranl AWWA, 76(6), pp.87~93.
10. Adin, A. and Katzhendler, J. (1991),〝Trihalomethane Formation in Chlorinated Drinking Water:A Kinetic Model,〞Water Research, 25(7), pp.797~805.
11. Pickering, W. F. (1966),〝Heterogeneous Oxidation Reactions,〞Rev. Pure Appl. Chem, 16, pp.185-208.
12. Hawthorne, D. G. and Solomon, D. H. (1972),〝Catalytic Activity of Sodium Kaolinites,〞Clays. Clay Minerals, 20, pp.75-78.
13. Solomon, D. H. and Murray, H. H. (1972),〝Acid-Base Interactions and the Properties of Kaolinite in Non-aqueous Media,〞Clays. Clay Minerals, 20, pp.135-141.
14. Bailey, G. W. and Karickhoff, S. W. (1973),〝An Ultraviolet Spectroscopic Method for Monitoring Surface Acidity of Clay Minerals under Varying Water Content,〞Clay. Clay Minerals, 21, pp.471-478.
15. Frenkel, M. (1974),〝Surface Acidity of Montmorillonite,〞Clay. Clay Minerals, 22, pp.435-442.
16. Helsen, J. A.; Drieskens, R. and Chaussidon, J. (1975),〝Position of Exchangeable Cations in Montmorillonite,〞Clays. Clay Minerals, 23, pp.334-335.
17. Hasegawa, H. (1962),〝Spectroscopic Studies on the Color Reaction of Acid Clay with Amines,〞J. Phys. Chem., 66, pp.834-835.
18. Teng, B. K. G. (1971),〝Mechanisms of Formation of Colored Clay-organic Complexes,〞Clays. Clay Minerals, 19, pp.383-390.
19. Furukawa, T. and Brindley, G. W. (1973),〝Adsorption and Oxidation of Benzidine and Aniline by Montmorillonite and Hectorite,〞Clays. Clay Minerals, 21, pp.279-287.
20. Thompson, T. D. and Moll, W. F. (1973),〝Oxidative Power of Smectites Measured by Hydroqunone,〞Clays. Clay Minerals, 21, pp.337-350.
21. Lahav, N. and Anderson, D. M. (1973),〝Montmorillonite-benzidine Reactions in the Frozen and Dry States,〞Clays. Clay Minerals, 21, pp.137.
22. Besson, G.; Estrade, H.; Gatineau, L.; Tchoubar, C. and Mering, J. (1975),〝A kinetic Survey of The Cation Exchange and The Oxidation of A Vermiculite,〞Clays. Clay Minerals, 23, pp.318-322.
23. Uytterhoeven, J. (1960),〝Organic Derivatives of Silicates and Aluminosilicates,〞Silicates Inds., 25, pp.403-409.
24. Uytterhoeven, J. (1962),〝Determination of the Surface Hydroxyl Groups of Kaolinite by Organometallic Compounds (CH3MgI and CH3Li),〞Bull. Groupe Franc. Argiles., 13, pp.69-76.
25. Solomon, D. H. (1968),〝Clay Mineral as Electron Acceptors and/or Electron Donors in Organic Reactions,〞Clays. Clay Minerals, 16, pp.31-39.
26. Yariv, S. and Cross, H. (1979),〝Geochemistry of Colloid System,〞Springer Verlag:Berlin.
27. Mortland, M. M. and Raman, K. V.,(1968),〝Surface Acidity of Smectites in Relation to Hydration, Exchangeable Cation, and Structure,〞Clays. Clay Minerals, 16, pp.393-398.
28. Mortland, M. M. (1975),〝Proceedings of the International Clay Conference,〞Wilmette, Illinois.
29. Soma, Y. and Soma, M. (1983),〝Raman Spectroscopic Evidence of Fromation of p-Dimethoxybenzene Cation on Cu-Montmorillonites,〞Chem. Phys. Letters, 94, pp.475-478.
30. Soma, Y. and Soma, M. (1985),〝Reaction of Aromatic Molecules in the Interlayer of Transition-Metal Ion-Exchanged Montmorillonite Studied by Resonance Raman Spectroscopy. 2. Monosubstituted Benzene and 4,4’-Disubstituted Biphenyls,〞J. Phys. Chem., 89, pp.738-742.
31. Frenkel, M. and Heller-Kallai, L. (1983),〝Interlayer Cations as Reaction Directors in the Transformation of Limonene on Montmorillonite,〞Clays. Clay Minerals, 31, pp.92-96.
32. Solomon, D. H.; Loft, B. C. and Swift, J. D. (1968),〝Reactions Catalyzed by Minerals. IV. The Mechanism of the Benzidine Blue Reaction on Silicate Minerals,〞Clay Miner., 7, pp.289-398.
33. Furukawa, T. and Brindley, G. W. (1973),〝Adsorption and Oxidation of Benzidine and Aniline by Montmorillonite and Hectorite,〞Clays. Clay Minerals, 21, pp.279-288.
34. Isaacson, P. J. and Sawhney, B. L. (1983),〝Sorption and Transformaiton of Phenols on Clay Surface:Effect of Exchangeable Cations,〞Clay Minerals, 18, pp.253-265.
35. Sawhney, B. L. (1985),〝Vapor-Phase Sorption and Polymerization of Phenols by Semectite in Air Nitrogen,〞Clays. Clay Minerals, 33, pp.123-127.
36. Shindo, H. and Huang, P. M. (1985),〝Catalytic Polymerization of Hydroquinone by Primary Minerals,〞Soil Science, 139, pp.505-511.
37. Wang, Thomas S. C.; Li, Song Wu and Ferng Yue Lang (1978),〝Catalytic Polymerization of Phenoilic Compoinds by Primary Minerals,〞Soil Science, 126, pp.15-21.
38. Philp. R. P.; Maxwell, J. R. and Eglinton, G. (1976),〝Environmental Geochemistry of Aquatic Sediments,〞Sci. Progr. (Oxf.), 63, pp.521-545.
39. Sieskind, O. and Albrecht, P. (1985),〝Efficient Synthesis of Rearranged Cholest-13(17)-enes Catalysed by Montmorillonite Clay,〞Tetrahedron Lett., 26, pp.2135-2136.
40. Mingerlgrin, U. and Salzman, S. (1979),〝Surface Reactions of Parathion on Clays,〞Clays. Clay Minerals, 27, pp.72-78.
41. March, J. (1985),〝Advanced Organic Chemistry, Reactions, Mechanisms, and Structure,〞3rd. Ed. ; John Wiley &Sons : New Youk.
42. El-Amamy, M. M. and Mill, T. (1984),〝Hydrolysis Kinetics of Organic-Chemicals on Montmorillonite and Kaolinite Surfaces As Related to Moisture-Content,〞Clays. Clay Minerals, 32, pp.67-73.
43. Theng, B. K. G. (1982), In〝International Clay Conf.〞; Van Olphen, H. ; Vaniale, F., Eds.; Elsevier: Amsterdam, pp.197-228.
44. Saltzman, S.; Mingelgrin, U. and Yaron, B. (1976),〝Role of Water Hydrolysis on Parathion and Methylparathion on Kaolinite,〞J. Agric. Food Chem., 24, pp.739-743.
45. Solomon, D. H. and Hawthorne, G. H. (1983),〝Chemistry of Pigmers and Fillers,〞John Wiley & Sons : New York.
46. Alexander, O.; Kagi, R. I. And Larcher, A. V. (1982),〝Clay Catalysis of Aromatic Hydrogen-Exchange Reactions,〞Geoshim. Cosmochim. Acta., 46, pp.219-222.
47. Alexander, O.; Kagi, R. I. And Larcher, A. V. (1984),〝Clay Catalysis of Alkyl Hydrogen-Exchange Reactions - Reaction-Mechanisms,〞Org. Gesmochim., 6, pp.755-760.
48. Thmopson, T. D. and Moll, W. F. (1973),〝Oxidative Power of Semctites Measured by Hydroquinone,〞Clays. Clay Minerals, 21, pp.337-350.
49. Soma, Y.; Soma, M. and Harada, I. (1986),〝The Oxidative Polymerization of Aromatic Molecules in the Interlayer of Montmorillonites Studuied by Resonance Raman Spectroscopy,〞J. Contaminant Hydrology, 1, pp.95-106.
50. Sawhney, B. L. ; Kozloski, R. K. ; Isaacson, P. J. and Gent, M. P. N. (1984),〝Polymerization of 2,6-Dimethylphnol on Smectite Surfaces,〞Clays. Clay Minerals, 32 (2), pp.108-114.
51. Lee, G. F. (1967),〝Kinetics of Reactions Between Chlorine and Phenolic Compounds,〞principles and applications of water chemistry, S. D. Faust and J. V. Hunted, eds., John Wiley, New York.
52. Cabestany, V. C. (1991),〝Characterization of Cationic Water-Soluble Polyacrylamides,〞Journal of Applied Polymer Science, 42(11), pp.2857~2869.
53. Simger, P. C. and Chang, S. D. (1989),〝Correlations Between Trihalomethanes and Total Organic Halides Formed During Water Treatment,〞Journal of American Water Work Association (Research and Technology), pp.61-65.
54. Katz, A.; Narkis, N. and Orshansky, F. (1994),〝Disinfection of Effluent by Combinations of Equal Doses of Chloride Dioxide and Chlorine Added Simultaneously Over Varying Contact Times,〞Water Res., 28(10), pp.2133~2138.
55. Edzwald, J. K. (1993),〝Coagulation in Drinking Water Treatment:Particles, Organics, and Coagulations,〞Water Science & Technology, 27(11), pp.21-35.
56. J. AWWA (1995),〝Primary Drinking Water Standards-Community Systems,〞.
57. Frederick, W Pontius (1995),〝An Update of the Federal Drinking Water Regs,〞J. AWWA.
58. 日本厚生省 (1993),〝飲用水水質標準,〞.
59. Decker, K. C. and Long, B. M. (1992),〝Canadian’s Cooperative Approach to Drinking Water Regulation,〞J. AWWA.
60. Australian (1994),〝Australian Drinking Water Guidelines,〞.
61. WHO (1993),〝Guidelines for Drinking Water Quality,〞Second Edition, Volume I, Recommendations.
62. 行政院環境保護署 (1998),〝飲用水水質標準,〞.
63. 張仁福 (1998),〝土壤污染防治學,〞高雄復文圖書出版公司.
64. Pfeifer, P.; Krim, J.; Wu, Y. J. and Cole, M. W. (1989),〝Multilayer Adsorption on a Fractally Rough-Surface,〞Physcial Review Letters, 62 (17), pp.1997-2000.
65. Pfeifer, P. and Cole, M. W. (1990),〝Fractals in Surface Science - Scattering and Thermodynamics of Adsorbed Films .2,〞New Journal of Chemistry, 14 (3), pp.221-232.
66. Neimark, A. V. (1992),〝A New Approach to the Determination of the Surface Fractal Dimension of Porous Solids,〞Physical A, 191, pp.258-262.
67. Tivadar, C.; Sándor, B.; François, F.; and Sándor, R. (1995),〝Benzy-lation of Aromatics on Ion-Exchanged Clays,〞J. of Molecilar Catalysis A:Chemical, 98, pp.101-107.
68. 彭紀綸 (1999),〝不同表面特性黏土於淨水程序中對高分子凝聚劑氯化反應影響之研究,〞碩士論文, 國立中央大學環境工程研究所.
69. Dixon, J. B. and Weed, S. B.,〝Minerals in Soil Environments,〞Soil Science Society of America.
70. Page, A. L.; Miller, R. H. and Keeney, D. R. (1982),〝Method of Soil Analysis,〞Part2-Chemical and Microbiological Properties(2nd Edn), pp.574.
71. Solomon, D. H.; Loft, B. C. and Swift, J. D. (1968),〝Reactions Catalyzed by Minerals. V. The Reaction of Leuco Dyes and Unsaturated Organic Compounds with Clay Minerals,〞Clay Miner., 7, pp.399-408.
72. .Thomas, S. C.; Wang, S. W. L. and Yue, L. F. (1978),〝Catalytic Polymerization of Phenolic Compounds by Clay Minerals,〞Soil Science, 126(1), pp.15-21.
73. J. Carrell Morris and Barbara Baum (1977),〝Precursors and Mechanism of Haloform formation in the Chlorination of Water Supplies,〞Water Chlorination : environmental impact and health effects Volume2; Ann Arbor Science, pp.29-48.
74. Delaude, L. and Laszlo, P. (1990),〝Versatility of Zeolites As Catalysts for Ring or Side-Chain Aromatic Chlorinations by Sulfuryl Chloride,〞J. Org. Chem., 55, pp.5260-5269.
75. 洪崑煌譯,〝土壤化學,〞國立編譯館
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔