跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林豐緯
研究生(外文):Fung-Wei Lin
論文名稱:超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
指導教授:許晉瑋許晉瑋引用關係
指導教授(外文):Jin-Wei Shi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:76
中文關鍵詞:近彈道單載子光二極體
外文關鍵詞:NBUTC-PD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們證實了近彈道單載子光二極體在次兆赫波的頻率範圍內把磊晶結構比例縮小是為高功率特性.比較UTC-PDs,NBUTC-PD提供一個比較高且最高限度的偏壓在近彈道電子傳輸,它改善輸出功率的特性。此外,一個小負載電阻(<50Ω),這會犧牲輸出功率在最小化的輸出AC電壓擺幅在DC偏壓點時,這是沒必要的。按比例縮小NBUTC-PDs的收集層厚度及主動區面積,我們實現了一個大的光電響應頻寬(250GHz)和高飽和電流(17mA),這是接近理論上的最大值在負載50Ω且-2V的偏壓下。
We demonstrate a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a scaled-down epi-layer structure designed for high-power performance in the sub-THz frequency regime. Compared with UTC-PDs, NBUTC-PDs offer a higher optimum bias voltage for the near-ballistic transport of electrons, which leads to improvement in the output power performance. Furthermore, a small load resistance (< 50Ω), which would sacrifice the output power for minimizing the output AC voltage swing on DC bias point, is not necessary. By scaling down the collector layer thickness and active area of the NBUTC-PDs, we achieve a large optical-to-electrical bandwidth (250 GHz) and a high saturation current (17 mA), which is close to the theoretical maximum, under a 50Ωload and -2V bias.
目錄
摘要 i
Abstract ii
致謝 iii
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1光纖通訊之發展趨勢 1
1.2 光偵測器之發展與應用 7
1.3 覆晶結合技術之發展趨勢 11
1.4 元件的應用 14
1.5 論文動機與架構 17
第二章 彈道傳輸單載子光偵測器設計 18
2.1 傳統P-I-N光偵測器工作原理 18
2.2 單載子傳輸光偵測器工作原理 20
2.3 近彈道單載子傳輸光偵測器工作原理 24
2.4 單載子傳輸光偵測器之結構設計 26
第三章 超高速(~300GHz)近彈道單載子光二極體(NBUTC-PD)製程步驟與底座製程步驟 30
3.1 超高速(~300GHz)近彈道單載子光二極體(NBUTC-PD)製程 30
3.2 CPW及傳輸器底座電路製程 52
3.3元件與傳輸線基板結合(Flip-Chip Bond) 61
第四章 彈道傳輸單載子光偵測器之量測與結果討論 64
4.1 Heterodyne-Beating 量測系統之架設 64
4.2 頻寬量測結果 65
4.3 高功率產生量測結果 70
第五章 結論與未來研究方向 72
參考文獻 73

參考文獻
[1] Y.-S. Wu, J.-W. Shi, J.-Y. Wu, F.-H. Huang, Y.-J. Chan, Y.-L. Huang, and R.Xuan “High Performance Evanescently Edge Coupled Photodiodes with Partially p-Doped Photo-absorption Layer at 1.55mm Wavelength,” IEEE Photon. Technol.Lett., vol. 17, no. 4, pp. 878-880, Apr. 2005.
[2] Mario Weiß, Mathieu Huchard, Andreas Stöhr, Benoît Charbonnier, Sascha Fedderwitz, and Dieter Stefan Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s” Journal Of Lightwave Technology, vol. 26, no. 15, pp. 2424-2429, Auguest 1 2008.
[3] J. J. Vegas Olmos, Toshiaki Kuri, and Ken-Ichi Kitayama, “60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 617-619, Apr.15 2008.
[4] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito,H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
[5] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans.Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul. 1999.
[6] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug. 2005.
[7] T. H. Stievater and K. J. Williams, “Thermally Induced Nonlinearities in High-Speed p-i-n Photodetectors,” IEEE Photon. Technol. Lett, vol. 16, pp. 239-241, Jan. 2004.
[8] N. Li, H. Chen, N. Duan, M. Liu, S. Demiguel, R. Sidhu, A. L. Holmes, Jr., and J.C. Campbell, “High Power Photodiode Wafer Bonded to Si Using Au With Improved Responsivity and Output Power” IEEE Photon. Technol. Lett, vol. 18,pp. 2526-2528, Dec. 2006.
[9] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi,“High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,”IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug.2004.
[10] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec. 2005.
[11] J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, High-Speed,High-Responsivity, and High-Power Performance of Near- Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, pp. 1929-1931, Sep. 2005.
[12] Y.-S. Wu, and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Unitraveling Carrier Photodiodes at W-Band," IEEE Photon.Technol. Lett., vol. 20, pp. 1160-1162, July. 2008.
[13] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a
High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55 m Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp.
938-940, Apr.2006.
[14] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan,“High-Saturation-Current Charge-Compensated InGaAs-InP Uni-Traveling-Carrier Photodiode,” IEEE Photon. Technol. Lett., vol. 16, pp.864-866, Mar. 2004.
[15] Ning Duan, Xin Wang, Ning Li, Han-Din Liu, and Joe C. Campbell
“ThermalAnalysis of High-Power InGaAs–InP Photodiodes,” IEEE Journal Of Quantum Electronics, vol. 42, no. 12, pp. 1255-1258, Dec. 2006.
[16] Jo Das, Herman Oprins, Hangfeng Ji, Andrei Sarua, Wouter Ruythooren, Joff Derluyn, Martin Kuball, Marianne Germain, and Gustaaf Borghs “Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design,” IEEE Transactions On Electron Device, vol. 53, no. 11, pp. 2696-2700,Nov. 2006.
[17] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition.
[18] Donald A. Neamen “Semiconductor physics & Devices Basic Principle,” second edition
[19] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, Jul./Aug. 2004.
[20] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
[21] J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave Photonic Wireless Links for Very-High Data Rate Communication,” NPG Asia Materials, vol. 3, No. 2, pp. 41-48, April, 2011.
[22] Andreas Beling, Heinz-Gunter Bach, Gebre Giorgis Mekonnen, Reinhard Kunkel, and Derlef Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Quantum Electron., vol. 13, no. 1, pp. 15-21, Jan./Feb. 2007.
[23] H. Ito, T. Furuta, S. Kodama, N. Watanabe, and T. Ishibashi “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, pp. 1809-1810, Oct., 2000.
[24] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
[25] J.-W. Shi, F .-M. Kuo, C.-J. Wu, C. L. Chang, C. Y. Liu, C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure,” IEEE J. of Quantum Electronics, vol. 46, pp. 80-86, Jan., 2010.
[26] T. Otsuji, N. Sahri, N. Shimizu, T. Nagatsuma, and T. Ishibashi, “A
105-GHz bandwidth optical-to-electrical conversion stimulus probe
head employing a unitraveling-carrier photodiode,” IEEE Photon.
Technol. Lett., vol. 11, pp. 1033–1035, Aug. 1999.
[27] T. Nagatsuma, A. Hirata, Y. Royter, M. Shinagawa, T. Furuta, T.
Ishibashi, and H. Ito, “A 120-GHz integrated photonic transmitter,” in
Microwave Photon. Tech. Dig., 2000, pp. 225–228.
[28] A. Hirata, “Design and characterization of millimeter-wave antenna for
integrated photonic emitter,” in Proc. Asia–Pacific Microwave Conf.,
2000, pp. 70–73.
[29] N. Sahri and T. Nagatsuma, “Application of 1.55-_mphotonic technologies
to practical millimeter-wave network analyzer,” IEICE Trans. Electron.,
vol. E82-C, pp. 1307–1311, 1999.
[30] N. Sahri and T. Nagatsuma, “Packaged photonic probes for an on-wafer
broad-band millimeter-wave network analyzer,” Photon. Technol. Lett.,
vol. 12, pp. 1225–1227, Sept. 2000.
[31] B. Ke, T. Chau, Y. Qian, M. Wu, and T. Itoh, “Tapered slot antenna
with velocity-matched distributed photodetector,” in IEEE MTT-S Int.
Microwave Symp. Dig., 1999, pp. 1241–1244.
[32] G. A. Chakam and W. Freude, “Coplanar phased array antenna with
optical feeder and photonic bandgap structure,” in Microwave Photon.
Tech. Dig., 1999, pp. 1–4.
[33]周銘哲,“應用串接式技術達到超高飽和電流-頻寬乘積值(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器”,國立中央大學,碩士論文,民國九十九年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王旭,1999,〈關於民意的民眾意見〉,《民意研究季刊》,207期,頁1-18。
2. 余致力,2000,〈民意與公共政策:表達方式的釐清與因果關係的探究〉,《中國行政評論》,9卷4期,頁81-110。
3. 呂秋遠,2000,〈政黨理念與政治現實的碰撞:國民黨與民進黨財經政策之比較〉,《問題與研究》,39卷1期,頁1-29。
4. 李酉潭,2006,〈民主鞏固或崩潰︰台灣與俄羅斯之觀察(1995~2005年)〉,《問題與研究》,45卷6期,頁33-77。
5. 林水波、石振國,1999,〈以直接民主改革間接民主的論述評估〉,《立法院院聞》,27卷3期,頁33-44。
6. 林國明,2004,〈公民會議的價值是凸顯多元性〉,《新新聞周報》,914期,頁54-55。
7. 柯三吉,1991,〈民意與公共政策〉,《人事月刊》,73期,頁15-21。
8. 徐美苓,1996,〈解嚴後台灣民意測驗新聞報導型態與方式之分析〉,《民意研究季刊》,198期,頁 1-34。
9. 徐美苓、夏春祥,1997,〈民意、媒體與社會環境--以解嚴後民意測驗新聞報導主題為例〉,《新聞學研究》,54期,頁167-188。
10. 陳世敏,1992,〈候選人形象與選民投票行為〉,《新聞學研究》,46期,頁149-168。
11. 陳敦源,2004,〈人民、專家與公共政策:民主理論下的「參與式知識管理」〉,《國家政策季刊》,3卷1期,頁99-134。
12. 陳敦源、李仲彬、黃東益,2007,〈應用資訊通訊科技可以改善「公眾接觸」嗎?台灣個案的分析〉,《東吳政治學報》,25卷3期,頁51-92。
13. 陳敦源、黃東益、蕭乃沂、郭思禹,2006,〈官僚回應性與內部顧客關係管理:台北市政府市長信箱個案研究〉,《行政暨政策學報》,42期,頁143-182。
14. 陳敦源、劉宜君、蕭乃沂、林昭吟,2011,〈政策利害關係人指認的理論與實務:以全民健保改革為例〉,《國家與社會》,10期,頁1-65。
15. 曾國祥,2007,〈審議民主的道德限制:柏林論政治自由與政治判斷〉,《臺灣民主季刊》,4卷4期,頁71-108。
 
1. 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
2. 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
3. 超高速單載子傳輸光偵測器和其在超寬頻帶的波導耦合式兆赫茲光子傳輸器之應用
4. 使用砷化鋁銦為基料並具有垂直正面入射結構、高速、高線性度、高增益頻寬積、和高靈敏度的累增崩潰二極體在100 Gbit/sec ER-4 通信系統的應用
5. 高速、低暗電流具有雙電荷層正面收光InAlAs 累增崩潰光二極體
6. 操作在零直流偏壓和次兆赫波頻段下並具有集極漸變帶溝的高性能銻砷化鎵/磷化銦單載子光偵測器
7. 具有鋅擴散和氧化掏離結構的超高速(>50 Gbps)垂直共振腔面射型雷射和其在200 Gbps短波波長多工系統的應用
8. 具有兆赫波頻寬、高輸出功率,使用GaAs0.5Sb0.5 / In0.53Ga0.47As II-型混合吸收層的超快速單載子傳輸光電二極體
9. 串聯及並聯陣列結構對準單模 850 nm光波段垂直共振腔面射型雷射之調制速度和輸出功率表現的增強
10. 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
11. 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
12. 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
13. 具有鋅擴散/氧化掏離結構之超高速(> 50 Gbit/sec) 940 nm光波段之垂直共振腔面射型雷射
14. 應變量子井和波長偏移量對超高速(>40Gbit/sec) 850nm光波段的垂直共振腔面射型雷射之高溫和動態 特性的影響
15. 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器