跳到主要內容

臺灣博碩士論文加值系統

(44.210.237.158) 您好!臺灣時間:2022/09/25 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁廷維
研究生(外文):Ting-wei Liang
論文名稱:以微波帶通放大器實現高整合度射頻前端收發系統
指導教授:林祐生林祐生引用關係
指導教授(外文):Yo-shen Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:126
中文關鍵詞:微波射頻功率放大器低雜訊放大器濾波器收發機
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主軸為帶通濾波器與放大器之整合,並以此實現高整合度射頻前端收發系統。首先為微波帶通功率放大器的研製,係整合微帶線帶通濾波器於功率放大器設計,並嵌入二極體於濾波器設計之中作為射頻開關,達到元件的多功能化,並縮小發射端電路面積,及提供良好的諧波抑制效果,亦能提高射頻前端的系統整合度。再來將帶通功率放大器與接收端之單端轉平衡帶通低雜訊放大器整合,完成同時具有收發切換開關、收發帶通濾波器、功率放大器、低雜訊放大器與平衡至非平衡轉換器之高整合度射頻前端收發系統。此系統接收頻帶為1.93 GHz到2.07 GHz,有11.5 dB以上的增益,大於10.2 dB的輸入與輸出反射損耗,低於2.9 dB的雜訊指數,平衡輸出之震幅差小於0.7 dB,相位差小於2.3度。系統發射頻率為2.2 GHz到2.3 GHz,於中心頻率2.25 GHz有8.2 dB的增益,21 dB的輸入反射損耗,15.2 dB的輸出反射損耗,於1 dB增益壓縮點時有25.8 dBm的輸出功率,38.1%的功率增加效率,三階輸出截斷點則為38.3 dBm。接收發射兩路皆整合了帶通濾波器,因此具有高頻率選擇度與良好的止帶抑制效果,另外在發射端諧波抑制方面,二次至五次諧波之輸出功率於1 dB增益壓縮點時,皆有-49.4 dBc以上的抑制效果。
針對上述高整合度收發系統架構,本研究提出簡潔的設計流程與設計公式,並於基板上實作驗證其可行性,而未來可以此設計理念,將其實現於積體電路製程,進一步縮小電路面積,提升此技術之競爭力。

This study investigates the systematic method in designing a highly-integrated RF front-end system based on the integration of bandpass filter and amplifier. Firstly, the design of a bandpass power amplifier is presented. It is achieved by integrating a coupled-line bandpass filter with a power amplifier, and a diode is also embedded in the filter structure to realize the RF switch. Then the proposed bandpass power amplifier is integrated with a single-to-balanced bandpass low-noise amplifier to achieve a highly integrated RF frontend system including single-pole-double-throw T/R-switch, bandpass filters for Tx/Rx, power amplifier, low noise amplifier, and balun. The receiver is design for 1.93 GHz to 2.07 GHz operation. The measured small-signal gain is more than 11.5 dB, the input/output return loss is better than 10 dB, the noise figure less than 2.9 dB, and good balance performance with 0.7 dB maximum amplitude imbalance and 2.3 degree maximum phase imbalance is demonstrated. The transmitter is design for 2.2 GHz to 2.3 GHz operation. At the center frequency 2.25 GHz, the measured small-signal gain is 8.2 dB, the input/output return loss is 21 dB/15.2 dB, the measured output power and power-added-efficiency are 25.8 dBm and 38.1% respectively at the 1-dB gain compression point and the output 3-order intercept point is at 38.3 dBm. Since both the transmitter and receiver integrate bandpass filters, good selectivity and stop-band rejection are achieved. Furthermore, for the garmonic suppression of transmitter, a better than -49.4 dBc suppression from 2nd to 5th harmonic output at the 1-dB gain compression point is also demonstrated.
This study also proposes a simple design flow with design equations for the abovementioned highly-integrated RF front-end system. The performance is verified using printed-circuit-board and discrete component. Further size reduction can also be achieved by using the integrated-circuit technology.

論文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
表目錄 X
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.3章節介紹 4
第二章 微波帶通功率放大器 5
2.1 微波帶通放大器簡介 5
2.2 微波帶通功率放大器簡介 6
2.3 微波帶通功率放大器電路設計 7
2.4 設計流程 27
2.5 微波帶通功率放大器實作 28
2.6 二級帶通功率放大器之評估 38
2.7 第二章總結 40
第三章 高整合度射頻前端收發模組 42
3.1 高整合度射頻前端收發模組介紹 42
3.2 微波帶通低雜訊放大器介紹 43
3.3 微波帶通低雜訊放大器設計 44
3.4 高整合度射頻前端收發模組實作 59
3.5 縮小化高整合度射頻前端收發模組實作 74
3.6 縮小化高整合度射頻前端收發模組實作之二 86
3.7 特性比較 99
3.8 第三章總結 104
第四章 結論 105
參考文獻 107


[1] S.-F. Gong, A. Backström, M. Ågesjö, A. Serban, and M. Karlsson, “Integration of a 5-GHz radio front-end in PCB,” in Proc. High Density Microsystem Design and Packaging and Component Failure Analysis Conf., June 2006, pp. 146–148.
[2] J. I. Ryu, D. Kim, H. M. Cho, and J. C. Kim, “Implementation of WLAN front end module with a power amplifier,” in Proc. Asia–Pacific Microw. Conf., Dec. 2007, pp. 99–102.
[3] C. H. Lee, A. Sutono, S. Han, K. Lim, S. Pinel, E. M. Tentzeris, and J. Laskar, “A compact LTCC-based Ku-band transmitter module,” IEEE Trans. Adv. Packag., vol. 25, no. 3, pp. 374–384, Aug. 2002.
[4] D. Kim, D. H. Kim, J. I. Ryu,Y. Park, and J. C. Park, “A compact BT/WiFi dual-band dual-mode RF front-end module,” in Proc. Asia–Pacific Microw. Conf., Dec. 2011, pp. 110–113.
[5] J.-I. Ryu, S.-H. Park, J.-W Moon, D. Kim, J. C. Kim, and N. Kang, “Implementation of a front-end-module by embedding a RF switch IC and a power amplifier in printed-circuit-
board,” in Proc. 59th, Electron. Comp. Technol. Conf., San Diego, CA, May 2009, pp.
1920–1925.
[6] W.-T. Chen, C.-S. Chen, C.-H. Tsai, K.-C. Chin, and S.-J. Lai, “A mobile WiMAX RF front-end module with integrated passive components and novel material,” in Proc. Electron. Syst. Integr. Technol. Conf., Sep. 2008, pp. 181–186.
[7] W. T. Khan, S. Bhattacharya, C. Patterson, G. E. Ponchak, and J. Papapolymerou, “Low cost 60 GHz RF front end transceiver integrated on organic substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, June 2011, pp. 1–4.
[8] P.-H. Wu, S.-M. Wang, and M.-W. Lee, “Wi-Fi/WiMAX dual mode RF MMIC front-end module,” in IEEE Radio Frequency Integrated Circuits Symp. Dig.,Boston, MA, June 2009, pp. 289–292.
[9] S. E. Gunnarsson, C. Kärnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2174–2186, Nov. 2005.
[10] A. Raghavan, D. Heo, M. Maeng, A. Sutono, K. Lim, and J. Laskar, “A 2.4 GHz high efficiency SiGe HBT power amplifier with high-Q LTCC harmonic suppression filter,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, Jun. 2002, pp. 1019–1022.
[11] H. Wang, C. Sideris, and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709–2722, Dec. 2010.
[12] K. Chen, X. Liu, W. J. Chappell, and D. Peroulis, “Co-design of power amplifier and narrowband filter using high-Q evanescent-mode cavity resonator as the output matching network,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, June 2011, pp. 1–4.
[13] K. Chen, J. Lee, W. J. Chappell, and D. Peroulis, “Co-design of highly efficient power amplifier and high-Q output bandpass filter,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3940 – 3950, Nov. 2013.
[14] K. Chen and D. Peroulis, “Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3162–3173, Dec. 2011.
[15] Y. C. Li, K. C. Wu, and Q. Xue, “Power Amplifier Integrated With Bandpass Filter for Long Term Evolution Application,” IEEE Microwave Wireless Component Letter, vol. 23, no. 8, August 2013.
[16] 黃雅純, “帶通功率放大器設計,” 碩士論文, 國立中央大學, June 2012.
[17] Y. Tsukahara, H. Amasuga, S. Goto, T. Oku and T. Ishikawa, “60 GHz high isolation SPDT MMIC switches using shunt pHEMT resonator , ” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1541-1544, Jun. 2008.
[18] D. Shaeffer and T. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp.745 - 759 , May 1997.
[19] S. M. Luo, S. H. Weng, Y. L. Ye, C. H. Lin, C. N. Chung and H. Y. Chang, “24-GHz MMIC development using 0.15-μm GaAs PHEMT process for automotive radar applications,” in Asia Pacific Microwave Conference Proceedings, pp. 1-4, Dec. 2008.
[20] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 µm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
[21] T. P. Wang, “A Low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon., vol. 20, no. 9, pp. 519-521, Sept. Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[22] T. K. Nguyen, S. G. Lee, “ A sub-mA, high-gain CMOS low-noise amplifier for 2.4 GHz applications,” Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on May 2006.
[23] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 µm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
[24] T. P. Wang, “A Low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon., vol. 20, no. 9, pp. 519-521, Sept. Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[25] A. Axholt, W. Ahmad and H. Sjöland, “A 90nm CMOS UWB LNA,” IEEE Norchip, pp. 25-28. Nov. 2008.
[26] P. Pieters , K. Vaesen , W. Diels , G. Carchon , S. Brebels , W. D. Raedt , E. Beyne and R. P. Mertens “High-Q integrated spiral inductors for high performance wireless front-end systems,” in Proc. IEEE Radio Wireless Conf., pp.251-254, Sep. 2000.
[27] J.-L. Chen, S.-F. Chang, C.-C. Liu and H.-W. Kuo, “Design of a 20-to-40 GHz bandpass MMIC amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1275–1278, Jun. 2003.
[28] A. Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, pp. 2269-2277,Dec. 2004.
[29] M. Yang, M. Ha, Y. Park and Y. Eo, “A 3–10 GHz CMOS low-noise amplifier using wire bond inductors,” Microwave and Optocal Technology Letters, vol.51, no. 2, pp. 414-416, Feb.2009.
[30] S. M. Rezaul Hasan,. “Analysis and design of a multistage CMOS band-pass low-noise preamplifier for ultrawideband RF receiver,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[31] Edwin van der Heijden, H. Veenstra, D. Hartskeerl, M. Notten and D. v. Goor, “Low noise amplifier with integrated balun for 24GHz car radar,” in Proc.SiRF, pp. 78-81,Jan. 2008.
[32] Huang, G., Kim, S.-K. and Kim, B.-S., “A wideband LNA with active balun for DVB-T application,” IEEE Int. Symp. on Circuits and Systems, pp. 421–424, May 2009.
[33] Azevedo, F. , Fortes, F. , Rosario, M.J., “A 2.4GHz CMOS balun/LNA for IEEE 802.11b/g WLAN transceiver,” Design &; Technology of Integrated Systems in Nanoscale Era, 2007. DTIS. International Conference on pp. 114–117, Sept. 2007.
[34] J. Li, R. Ma, L. Han, R. Yang, and Wenmei Zhang, “A Co-design Study of Low Noise Amplifier and Band-pass Filter,” Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on pp. 1–3, May 2012.
[35] 鍾育軒, “微波帶通低雜訊放大器設計” 碩士論文, 國立中央大學, 2009.
[36] 王品傑, “以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統,” 碩士論文, 國立中央大學, June 2010.
[37] 吳建鋒, “以多重耦合線實現新式多功能微波元件,” 碩士論文, 國立中央大學, June 2011.
[38] 夏維凡, “應用於射頻前端系統之高整合度主動式帶通濾波器設計,” 碩士論文, 國立中央大學, June 2012.
[39] L. K. Yeung, K.-L. Wu, Y. E. Wang, “Low-temperature cofired ceramic LC filters for RF applications,” IEEE Microw. Mag., vol 9, no. 5, pp.118–128, Oct. 2008.
[40] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley &; Sons, Inc., 2005.
[41] R. E. Lehmann and D. D. Heston, “X-Band monolithic series feedback LNA,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1560-1566, Dec. 1985.
[42] C.-L. Tsai and Y.-S. Lin, “Analysis and design of new single-to-balanced multi-coupled line bandpass filters using low temperature co-fired ceramic technology,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 12, pp. 2902-2912, Dec. 2008.
[43] Y.-S. Lin, J.-F. Wu, W.-F. Hsia, P.-C. Wang, Y.-H. Chung, “Design of electronically switchable single-to-balanced bandpass low-noise amplifier,” IET Microwaves, Antennas &; Propagation,vol. 7,no. 7,pp.510-517, May 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊