(18.210.28.227) 您好!臺灣時間:2019/11/23 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:楊建昱
研究生(外文):Jian-Yu Yang
論文名稱(外文):Variational Image Fusion with First-Order Gradient Information
指導教授:楊肅煜
指導教授(外文):Suh-Yuh Yang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:38
中文關鍵詞:影像融合特徵選取變分影像融合模型分離 Bregman 迭代
外文關鍵詞:image fusionfeature selectionvariational image fusion modelsplit Bregman iteration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
影像融合是影像處理領域裡的一個重要議題,它的主要目標是整合多張給定的影像形成一張比原始影像更具視覺品質的融合影像。本文的目標是改進 Li 和 Zeng 在 [14] 針對局部模糊影像所提出的變分影像融合模型。首先,我們設計一種新的選擇準則用來選取給定的多張圖像的一階梯度信息作為圖像特徵,預期該圖像特徵應該接近目標圖像的梯度向量,然後我們以所取得的圖像特徵做為基礎,提出一個變分圖像融合模型用以融合給定的局部模糊影像,並且引用分離 Bregman 迭代法有效地解決相對應的變分問題。最後,數值例子驗證了所提出的新模型的有效性,同時我們還與 Li 和 Zeng 模型 [14] 的結果進行了比較。
Image fusion is an important issue in the field of image processing. The main goal of image fusion is to integrate several source images into a fused image with a better visual quality compared to the source images. The purpose of this thesis is to improve the variational image fusion model for local-blurred images proposed by Li and Zeng in [14]. First, we design a new selection criterion to select the first-order gradient information of source images as the image feature which is expected to be close to the gradient of the target image feature. We then propose a variational image fusion model using this image feature to fuse the given local-blurred images. Furthermore, the split Bregman iteration is employed to efficiently solve the corresponding variational problem. Finally, numerical examples are given to illustrate the effectiveness of the newly proposed model. Comparisons are also made with the results of the Li-Zeng model [14].
Contents

中文摘要 ....................................................... i

英文摘要 ...................................................... ii

Contents .................................................... iii

Abstract ...................................................... 1

1 Introduction ................................................ 2

2 Variational image fusion model .............................. 4
2.1 Feature selection ........................................ 4
2.2 The proposed model ....................................... 6

3 Numerical scheme ............................................ 7
3.1 The split Bregman iteration .............................. 7
3.2 Difference operators ..................................... 8

4 Numerical experiments ....................................... 9
4.1 Test1 ................................................... 10
4.2 Test2 ................................................... 14
4.3 Test3 ................................................... 19
4.4 Test4 ................................................... 24

5 Summary and conclusion ..................................... 29

References ................................................... 30
[1] C. Ballester, V. Caselles, L. Igual, J. Verdera, and B. Roug´e, A variational model for P+XS image fusion, International Journal of Computer Vision, 69 (2006), pp. 43-58.

[2] N. Burgos, M. J. Cardoso, M. Modat, S. Pedemonte, J. Dickson, A. Barnes, J. S. Duncan, D. Atkinson, S. R. Arridge, B. F. Hutton, and S. Ourselin, Attenuation correction synthesis for hybrid PET-MR scanners, In: K. Mori, I. Sakuma, Y. Sato, C. Barillot, N. Navab, Editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, pp. 147-154, Lecture Notes in Computer Science, Vol. 8149, Springer, Berlin.

[3] R. S. Blum and Z. Liu, Multi-Sensor Image Fusion and Its Applications, CRC Press, Taylor & Francis, Boca Raton, Florida, 2005.

[4] P. J. Burt and R. J. Kolczynski, Enhanced image capture through fusion, 1993 (4th) International Conference on Computer Vision, IEEE, (1993), pp. 173–182.

[5] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM Journal on Imaging Sciences, 3 (2010), pp. 492-526.

[6] K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation constraints, In: Proceedings of Sampling Theory and Applications, 2011.

[7] A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Numerische Mathematik, 76 (1997), pp.167-188.

[8] J. F. Cai, S. Osher, and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Modeling and Simulation: a SIAM Interdisciplinary Journal, 8 (2009), pp. 337-369.

[9] M. J. Ehrhardt and S. R. Arridge, Vector-valued image processing by parallel level sets, IEEE Transactions on Image Processing, 23 (2014), pp. 9-18.

[10] T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), pp. 323-343.

[11] Y. Hu and M. Jacob, Higher degree total variation (hdtv) regularization for image recovery, IEEE Transactions on Image Processing, 21 (2012), pp. 2559-2571.

[12] H. Li, B. S. Manjunath, and S. K. Mitra, Multi-sensor image fusion using the wavelet transform, Graphical Models and Image Processing, 57 (1995), pp. 235-245.

[13] M. Lysaker and X. C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, International Journal of Computer Vision, 66 (2006), pp. 5-18.

[14] F. Li and T. Zeng, Variational image fusion with first and second-order gradient information, Journal of Computational Mathematics, 34 (2016), pp. 200-222.

[15] A. G. Mahyari and M. Yazdi, Panchromatic and multispectral image fusion based on maximization of both spectral and spatial similarities, IEEE Transactions on Geoscience and Remote Sensing, 49 (2011), pp. 1976-1985.

[16] G. Piella, Image fusion for enhanced visualization: a variational approach, International Journal of Computer Vision, 83 (2009), pp. 1-11.

[17] G. Pajares and J. M. de la Cruz, A wavelet-based image fusion tutorial, Pattern Recognition, 37 (2004), pp. 1855-1872.

[18] S. Setzer, Operator splittings, Bregman methods and frame shrinkage in image processing, International Journal of Computer Vision, 92 (2011), pp. 265-280.

[19] P. Scheunders and S. De Backer, Fusion and merging of multispectral images with use of multiscale fundamental forms, Journal of the Optical Society of America A, 18 (2001), pp. 2468-2477.

[20] D. A. Socolinsky and L. B. Wolff, Multispectral image visualization through first-order fusion, IEEE Transactions on Image Processing, 11 (2002), pp. 923-931.

[21] Q. Zhang and B. Guo, Multifocus image fusion using the nonsubsampled contourlet transform, Signal Processing, 89 (2009), pp. 1334-1346.
電子全文 電子全文(網際網路公開日期:20200801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔