(34.204.189.171) 您好!臺灣時間:2019/10/16 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:楊時賢
研究生(外文):YANG Shih-Sian
論文名稱:大氣重力波位能之時空分布及控因
論文名稱(外文):Analysis of the Distribution and Controlling Factors in the Atmospheric Gravity Wave Potential Energy
指導教授:潘貞杰
學位類別:博士
校院名稱:國立中央大學
系所名稱:太空科學研究所
學門:自然科學學門
學類:天文及太空科學學類
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:大氣重力波綜觀尺度
外文關鍵詞:atmospheric gravity wavessynoptic scale
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在過去數十年間,大氣重力波的全球形態和季節特性已被廣泛的研究,並被歸納主要為地形和對流系統、以及高緯度地區極夜噴流和平流層瞬間暖化的影響。然而這些控因並不能完全解釋重力波的時空分布。為了補充前人研究之不足,本論文進行了一系列的分析,調查大氣背景參數和綜觀尺度系統對重力波位能值(Ep)的影響。利用TIMED/SABER所觀測的大氣溫度剖面資料,經濾波後求出2002年至2013年間、共12年全球的Ep值分布,再以ERA-Interim再分析資料提供的大氣背景及綜觀尺度參數進行調查,瞭解這些參數與Ep值的關聯性。赤道大氣克耳文波對Ep值有相當大的貢獻,並促成了Ep值與背景風場的關聯性。臭氧濃度在20 至 27公里高度達到絕對最大值,使Ep值在24公里高度附近具有局部的最大值。在溫帶氣旋及間熱帶輻合區附近,Ep值具有較高的數值;而在副熱帶高壓的勢力範圍內,Ep值具有較低的數值。此外,亦改以對流可用位能(CAPE)聯結對流系統與Ep值之間的關聯性,為本論文的論點進行佐證。本論文針對大氣背景參數及對流活動和Ep值之關聯性做了更詳盡的解釋,並且首度嘗試引入綜觀尺度參數分析重力波活動,進一步證實綜觀尺度系統與Ep值之關聯性。
In the past years, global morphology and climatology of atmospheric gravity waves have been widely studied and the effects of topography, convection systems, polar night jet, and sudden stratospheric warming events have been evaluated, but the complete gravity wave distribution could not be explained by these effects. To find the missing controlling factors, a series of analyses is performed in the present study to investigate relationships between atmospheric parameters, synoptic scale factors, and potential energy (Ep) associated with gravity waves. Global distribution of Ep during a 12-year period from 2002 to 2013 is derived using temperature profiles retrieved from observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. Atmospheric parameters and synoptic scale factors obtained from the ECMWF Interim reanalysis (ERA-Interim) data are employed to investigate the correlation between synoptic systems and Ep. Kelvin waves contribute most of Ep over the equatorial region. The local maximum of Ep around 24 km altitude is related to the maximum concentration of stratospheric ozone. It is found that Ep values are high around extratropical cyclones over mid-latitudes (30° – 60°) and around the Intertropical Convergence Zone (ITCZ) over low-latitudes (10° – 30°). Ep values are low around subtropical highs over both mid- and low-latitudes. Furthermore, the convective available potential energy (CAPE) is employed as a proxy, to link the convective systems to Ep distribution. The relationship between synoptic systems and Ep is also established by analyzing the correlation between CAPE and Ep. In the present study, the missing controlling factors are complemented, and this is also the first time that a synoptic scale analysis of Ep distribution is performed, and the influence of synoptic scale factors on Ep confirmed.
中文摘要 i
英文摘要 ii
致謝iii
目錄 iv
圖目錄 vi
表目錄 vii
一、緒論 1
1-1 文獻探討 1
1-2 研究動機與目的 3
1-3 研究方法與論文大綱 3
二、溫度資料與理論方法 4
2-1 溫度剖面資料 4
2-2 重力波位能值Ep 6
2-2-1 背景溫度(T ̅) 7
2-2-2 溫度剖面之濾波 8
2-2-3 品質控制 8
2-2-4 溫度擾動項之移動平均 9
2-2-5 重力加速度 9
2-2-6 布維頻率10
2-2-7 Ep值之計算、網格化、月平均、地方時平均11
2-2-8 赤道大氣克耳文波與Ep值12
2-3Ep 值之基本特性與比較15
2-3-1 單一剖面比較15
2-3-2 高度變化19
2-3-3 緯度變化21
2-3-4 時間變化22
2-4 本章小結24
三、氣象尺度、系統與參數25
3-1 氣象尺度25
3-2 綜觀尺度系統26
3-2-1 溫帶氣旋26
3-2-2 間熱帶輻合區與副熱帶高壓27
3-3 再分析資料與對流參數31
3-3-1 再分析資料31
3-3-2 出長波輻射32
3-3-3 CMAP33
3-3-4 對流可用位能33
四、Ep值與大氣背景參數36
4-1 赤道大氣克耳文波、Ep值與背景風場36
4-2 Ep值與臭氧41
4-3 本章小結44
五、下平流層Ep值與綜觀尺度系統45
5-1 下平流層Ep值之全球分布45
5-2 中緯度Ep值之時空分布47
5-2-1 中緯度高Ep值區48
5-2-2 中緯度低Ep值區49
5-3 低緯度Ep值之時空分布52
5-3-1 低緯度高Ep值區53
5-3-2 低緯度低Ep值區56
5-4 Ep值與對流系統57
5-5 本章小結64
六、結論及本論文主要貢獻65
參考文獻67
1. Nastrom, G.D. and D.C. Fritts, Sources of Mesoscale Variability of Gravity Waves. Part I: Topographic Excitation. Journal of the Atmospheric Sciences, 1992. 49(2): p. 101-110.
2. Fritts, D.C. and G.D. Nastrom, Sources of Mesoscale Variability of Gravity Waves. Part II: Frontal, Convective, and Jet Stream Excitation. Journal of the Atmospheric Sciences, 1992. 49(2): p. 111-127.
3. Alexander, M.J. and L. Pfister, Gravity wave momentum flux in the lower stratosphere over convection. Geophysical Research Letters, 1995. 22(15): p. 2029-2032.
4. Fritts, D.C. and M.J. Alexander, Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 2003. 41(1): p. 1003.
5. Murayama, Y., T. Tsuda, and S. Fukao, Seasonal variation of gravity wave activity in the lower atmosphere observed with the MU radar. Journal of Geophysical Research: Atmospheres, 1994. 99(D11): p. 23057-23069.
6. Tsuda, T., et al., Variations of the gravity wave characteristics with height, season and latitude revealed by comparative observations. Journal of Atmospheric and Terrestrial Physics, 1994. 56(5): p. 555-568.
7. Hirota, I., Climatology of gravity waves in the middle atmosphere. Journal of Atmospheric and Terrestrial Physics, 1984. 46(9): p. 767-773.
8. Hamilton, K., Climatological statistics of stratospheric inertia-gravity waves deduced from historical rocketsonde wind and temperature data. Journal of Geophysical Research: Atmospheres, 1991. 96(D11): p. 20831-20839.
9. Allen, S.J. and R.A. Vincent, Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. Journal of Geophysical Research: Atmospheres, 1995. 100(D1): p. 1327-1350.
10. Tsuda, T., et al., A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET). Journal of Geophysical Research: Atmospheres, 2000. 105(D6): p. 7257-7273.
11. de la Torre, A., T. Schmidt, and J. Wickert, A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP. Geophysical Research Letters, 2006. 33(24): p. L24809.
12. Zhang, Y., et al., A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data. Journal of Geophysical Research: Atmospheres, 2012. 117(D21): p. D21101.
13. Thunis, P. and R. Bornstein, Hierarchy of Mesoscale Flow Assumptions and Equations. Journal of the Atmospheric Sciences, 1996. 53(3): p. 380-397.
14. Vincent, R.A. and M.J. Alexander, Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability. Journal of Geophysical Research: Atmospheres, 2000. 105(D14): p. 17971-17982.
15. Preusse, P., et al., Indications of convectively generated gravity waves in crista temperatures. Advances in Space Research, 2001. 27(10): p. 1653-1658.
16. TIMED Mission Guide, 2006, The Johns Hopkins University Applied Physics Laboratory.
17. Russell III, J.M., et al. Overview of the SABER experiment and preliminary calibration results. 1999.
18. Mertens, C.J., et al., Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 µm Earth Limb Emission under non-LTE conditions. Geophysical Research Letters, 2001. 28(7): p. 1391-1394.
19. VanZandt, T.E., A model for gravity wave spectra observed by Doppler sounding systems. Radio Science, 1985. 20(6): p. 1323-1330.
20. Holton, J.R. and G.J. Hakim, An Introduction to Dynamic Meteorology. Fifth Edition ed. 2012, Boston: Academic Press. 552.
21. Eckermann, S.D., I. Hirota, and W.K. Hocking, Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Quarterly Journal of the Royal Meteorological Society, 1995. 121(521): p. 149-186.
22. Tsai, H.-F., et al., Equatorial Kelvin Waves Observed with GPS Occultation Measurements (CHAMP and SAC-C). Journal of the Meteorological Society of Japan. Ser. II, 2004. 82(1B): p. 397-406.
23. Tsuda, T., et al., Characteristics of 10-day Kelvin Wave Observed with Radiosondes and CHAMP/GPS Occultation during the CPEA Campaign (April-May, 2004). Journal of the Meteorological Society of Japan. Ser. II, 2006. 84A: p. 277-293.
24. Blakely, R.J., Potential Theory in Gravity and Magnetic Applications. 1996: Cambridge University Press.
25. Moritz, H., Geodetic Reference System 1980. Journal of Geodesy, 2000. 74(1): p. 128-133.
26. Andrews, D.G., J.R. Holton, and C.B. Leovy, Middle Atmosphere Dynamics. International Geophysics Volume 40. 1987: Academic Press, Orlando, Florida, USA.
27. Wang, B., Kelvin Waves, in Encyclopedia of Atmospheric Sciences, J.R. Holton, Editor. 2003, Academic Press: Oxford. p. 1062-1068.
28. Alexander, S.P., T. Tsuda, and Y. Kawatani, COSMIC GPS Observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model. Geophysical Research Letters, 2008. 35(10): p. L10808.
29. Alexander, S.P., et al., Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. Journal of Geophysical Research: Atmospheres, 2008. 113(D24): p. D24115.
30. John, S. and K. Kumar, TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Climate Dynamics, 2012. 39(6): p. 1489-1505.
31. Das, U. and C.J. Pan, Validation of FORMOSAT-3/COSMIC level 2 "atmPrf" global temperature data in the stratosphere. Atmospheric Measurement Techniques, 2014. 7(3): p. 731-742.
32. Wilcox, L.J., B.J. Hoskins, and K.P. Shine, A global blended tropopause based on ERA data. Part I: Climatology. Quarterly Journal of the Royal Meteorological Society, 2012. 138(664): p. 561-575.
33. Ratnam, M.V., et al., Enhancement of gravity wave activity observed during a major Southern Hemisphere stratospheric warming by CHAMP/GPS measurements. Geophysical Research Letters, 2004. 31(16): p. L16101.
34. Sato, K. and M. Yoshiki, Gravity Wave Generation around the Polar Vortex in the Stratosphere Revealed by 3-Hourly Radiosonde Observations at Syowa Station. Journal of the Atmospheric Sciences, 2008. 65(12): p. 3719-3735.
35. Antonita, T.M., et al., Quantification of gravity wave forcing in driving the stratospheric Quasi-Biennial Oscillation. Geophysical Research Letters, 2008. 35(9): p. L09805.
36. Ern, M., et al., Interaction of gravity waves with the QBO: A satellite perspective. Journal of Geophysical Research: Atmospheres, 2014. 119(5): p. 2329-2355.
37. Ahrens, C.D. and R. Henson, Meteorology Today. 11 th ed. 2015: Cengage Learning. 656.
38. Žagar, N., G. Skok, and J. Tribbia, Climatology of the ITCZ derived from ERA Interim reanalyses. Journal of Geophysical Research: Atmospheres, 2011. 116(D15): p. D15103.
39. McGregor, G.R. and S. Nieuwolt, Tropical Climatology: An Introduction to the Climates of the Low Latitudes. 1998: Wiley. 339.
40. Suzuki, T., Seasonal variation of the ITCZ and its characteristics over central Africa. Theoretical and Applied Climatology, 2011. 103(1-2): p. 39-60.
41. Li, W., et al., Changes to the North Atlantic Subtropical High and Its Role in the Intensification of Summer Rainfall Variability in the Southeastern United States. Journal of Climate, 2010. 24(5): p. 1499-1506.
42. Wu, B. and T. Zhou, Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high. Geophysical Research Letters, 2008. 35(13): p. L13701.
43. Lu, R., Interannual Variability of the Summertime North Pacific Subtropical High and its Relation to Atmospheric Convection over the Warm Pool. Journal of the Meteorological Society of Japan. Ser. II, 2001. 79(3): p. 771-783.
44. Dee, D.P., et al., The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 2011. 137(656): p. 553-597.
45. Berrisford, P., et al., The ERA-Interim archive Version 2.0, in ERA Report Series2011.
46. Jacobowitz, H., et al., The Earth Radiation Budget (ERB) Experiment: An overview. Journal of Geophysical Research: Atmospheres, 1984. 89(D4): p. 5021-5038.
47. Kyle, H.L., et al., The Nimbus Earth Radiation Budget (ERB) Experiment: 1975 to 1992. Bulletin of the American Meteorological Society, 1993. 74(5): p. 815-830.
48. Gu, G. and C. Zhang, Cloud components of the Intertropical Convergence Zone. Journal of Geophysical Research: Atmospheres, 2002. 107(D21): p. 4565.
49. Huffman, G.J., et al., The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bulletin of the American Meteorological Society, 1997. 78(1): p. 5-20.
50. Bluestein, H.B., Synoptic-dynamic Meteorology in Midlatitudes: Observations and theory of weather systems. 1992: Oxford University Press.
51. Pan, C.J., et al., Investigation of Kelvin Waves in the Stratosphere Using FORMOSAT-3/COSMIC Temperature Data. Journal of the Meteorological Society of Japan. Ser. II, 2011. 89A: p. 83-96.
52. Hoskins, B.J. and K.I. Hodges, A New Perspective on Southern Hemisphere Storm Tracks. Journal of Climate, 2005. 18(20): p. 4108-4129.
53. Pulido, M., et al., High gravity-wave activity observed in Patagonia, Southern America: generation by a cyclone passage over the Andes mountain range. Quarterly Journal of the Royal Meteorological Society, 2013. 139(671): p. 451-466.
54. Waliser, D.E., N.E. Graham, and C. Gautier, Comparison of the Highly Reflective Cloud and Outgoing Longwave Radiation Datasets for Use in Estimating Tropical Deep Convection. Journal of Climate, 1993. 6(2): p. 331-353.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔