跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 20:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊脩生
研究生(外文):Hsiu-Sheng Yang
論文名稱:具再分散性之奈米級氧化鋯結晶粒子之合成研究
論文名稱(外文):Preparation of Agglomeration-free Zirconia Nanocrystals
指導教授:蔣孝澈
指導教授(外文):Shiaw-Tseh Chiang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:79
中文關鍵詞:奈米粒子氧化鋯再分散表面改質
外文關鍵詞:nanoparticlezirconiaAgglomeration-freeSurface modification
相關次數:
  • 被引用被引用:10
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
本研究的目的是在低溫下製備出具有均一粒徑且可分散在溶劑中的氧化鋯奈米結晶。過程中先探討影響氫氧化鋯水解程度的因素,然後找到適當條件製備出氧化鋯奈米結晶。最後將之表面改質使可分散於中性溶劑。
本研究以氯氧鋯為原料,先配製含鋯之酸液。再以氨水或者氫氧化鈉將之中和以水解沉降製成氫氧化鋯。最後再以水熱反應將氫氧化鋯製成氧化鋯結晶。其中探討離子濃度、pH值、水熱溫度等變因對產生氧化鋯之粒徑及結晶性的影響。我們發現在鹼性下合成出的氫氧化鋯可以製成較均勻之半透明氧化鋯粒子溶膠。此一溶膠經過凝絮過濾清洗等步驟得到非晶形之氧化鋯凝膠。再將凝膠分散於氫氧化鈉溶液中,於110℃下水熱15小時後,可得到30nm左右之t-ZrO2。經由表面改質後製出可再分散於中性溶液之奈米結晶。
Abstract
This work describes the low-temperature synthesis of zirconia nanocrystals. The synthesized nanocrystals are aggregate-free and can be redispersed in neutral solutions.The zirconia nanocrsytals are synthesized from zirconium oxychloride via intermediate formation of zirconium hydroxide, precipitated by the addition of NaOH or NH4OH. The transformation of zirconium hydroxide into the nanocrystals of zirconia was effected by a hydrothermal treatment.The hydrolysis of zirconium oxychloride was found to be dependent on pH and was highest at pH 10, amongst the pH range studied. The hydrolyzed product of zirconium oxychloride was maintained at pH 11.5 and was hydrothermally treated at 1100C, for 15 h, which then produced nanocrystals.The nanocrystals obtained were 10 nm in size(TEM and XRD analysis). Te nanocrystals could be redispersed in water upon their surface modification; this suspension gave particle size of 30 nm on DLS analysis. The nanocrystals showed tetragonal geometry (XRD and EDS) and the crystallinity (DSC) was near to 100%.
目錄
摘要……………………………………………………………………Ⅰ
目錄……………………………………………………………………Ⅱ
圖目錄…………………………………………………………………Ⅳ
表目錄…………………………………………………………………Ⅶ
第一章緒論……………………………………………………………1
1.1-1 氧化鋯的基本性質……………………………………………….1
1.1-2 氧化鋯之應用…………………………………………………….2
1.2-1 奈米陶瓷材料…………………………………………………….3
1.2-2 奈米粒子之合成方法…………………………………………...6
1.3 合成氧化鋯奈米粒子之文獻回顧……………………..………….6
1.3-1 水熱合成氧化鋯結晶粒子之文獻回顧………………………….8
1.3-2 奈米粒子的團聚與分散…………………..……………………14
1.4 研究方向………..………………………………..………………18
第二章製備氫氧化鋯溶膠………………………………………….22
2.1 製作氫氧化鋯溶膠過程變因探討……………………………….22
2.2 製作高度水解之氫氧化鋯溶膠…………………………………..36
第三章奈米氧化鋯結晶水熱合成及表面改質…………………….42
3.1 結晶度之判斷…………………………………………………….42
3.2 氧化鋯之水熱結晶………………………………………………..43
3.3 氧化鋯之表面改質………………………………………………..51
第四章 結論…………………………………………………………..72
參考文獻………………………………………………………………..73
附錄一:實驗所使用相關儀器………………………………………..77
附錄二:實驗藥品……………………………………………………..79
1、邱碧秀,”電子陶瓷材料”,第七章 氧化鋯固態電解質,p.296~326,徐氏基金會出版,(1988)。2、吳政興,”納米級氧化鋯結晶製備”,中央大學化工所碩士論文,p.2,(1998)。3、陳光龍,”納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備”,中央大學化工所碩士論文,p.1∼22,(2000)。4、張立德,牟季美,”納米材料和納米結構”,第五章 奈米粒子的製備與表面修飾,p.112∼141。5、謝志文,〝以溶膠-凝膠法製備(Al-B)或(Ti-B)雙氧化物薄膜及粉體〞,國立中央大學化工所博士論文,p.1∼49,(1992)。6、Woodhead J. L., “Improvements in or relating to Zirconium Compounds”, British Patent 1,181,794, (1970).7、Bleier A. and Cannon R. M., “Nucleation and Growth of Uniform m-ZrO2”, Mat. Res. Soc. Symp. Proc., 73, p.71~78, (1986).8、Kato E., “High-dispersion sol or gel of monoclinic zirconia super-microcrystals and production of the same”, U.S. Patent 4,784,794, (1988)9、Wusirika R. R., “Preparation of mono-sized zirconia powders by forced hydrolysis”, U.S. patent 4,719,091, (1988)10、Raymond P. D., Kevor S. T., and James H. A., “Hydrothermal crystallization kinetics of m-ZrO2 and t-ZrO2”, J. Mat. Res., 5, p.2698~2705.11、Miiroslaw M. B., Krzysztof H., “Crystallization of Zirconia under Hydrothermal Condition”, J. Am. Ceram. Soc., 78, p.3397~3400, (1995).12、Cheng H. M., Wu L. J., Ma J. M., Zhang Z. Y. and Qi L. M.,”Hydrothermal preparation of nanosized cubic ZrO2 powders”, J. Mater. Soc. Letters, 15, p.895~897, (1996).13、Matsui K. and Ohgai M.,”Formation Mechanism of Hydrous-Zirconia Particles Produced by Hydrolysis of ZrOCl2 Solutions”, J. Am. Ceram. Soc., 80, p.1949~1956, (1997).14、Stefanic G., Poporic S., Music S., “Influence of pH on the hydrothermal crystallization kinetics and crystal structure of ZrO2”, Thermochimica Acta, 303, p.31~39, (1997).15、Hu M. Z. -C., Harris M. T., and Byers C. H., “Nucleation and Growth for Synthesis of Nanometric Zirconia Particles by Forced Hydrolysis”, J. Colloid Interface Soc., 198, p.87~99, (1998).16、Cheng H. M., Wu L. J., Ma J. M., Zhang Z. Y. and Qi L. M., “The effect of pH and Alkaline Earth Ions on the Formation of Nanosized Zirconia Phases Under Hydrothermal Condition”, J. Eup. Ceram. Soc., 19,p.1675~1681, (1999).17、Lee K., Sathyagal A., Carr P. W., and Mccormick A. V., “Synthesis of Zirconia Colliods from Aqueous Salt Solutions”, J. Am. Ceram. Soc., 82, p.338~342, (1999).18、Young S. K., Sang C. K., “Crystallization and degradation of zirconium oxide in various pH solutions”, J. of Nuclear Mat. , 270, p.165~173, (1999).19、Piticescu R. R., Monty C.,Taloi D., Motoc A., Axinte S., “Hydrothermal synthesis of zirconia nanomaterials”, J. Eup. Ceram. Soc., 21,p.2057~2060, (2001).20、張有義,郭蘭生編譯,”膠體及界面科學入門”,高利圖書有限公司,7.1 電雙層理論,p191~208,(1997)。21、Drew Myers,”Surfaces, Interfaces, and Colloids”,chp. 10, p.187~219.22、Jeong .G. Y., Yeon G. J., Sung C. C., Mat. Let. , 37, p.304~311, (1998).23、Biggs S., Scales P. J., Leong Y. K., Healy T. W., “Effects of Citric Adsorption on the Interactions between Zirconia surfaces”, J. Chem. Soc. Faraday Trans., 91, p.2921~2928,(1995).24、Solomon M. J., Saeki T., Wan M., Scales P. J., Boger D. V., Usui H., “Effects of Adsorbed Srufactants on toh Rheology of Colloidal Zirconia Suspensions”, Langmuir, 15, p.20~26, (1999).25、Wang j., and Gau L., “Surface properties of polymer adsorbed zirconia nanoparticles”, Nanostruct. Mat. , 11, p.451~457, (1999).26、Wang J., Gao L., “Surface and electrokinetic properties of Y-TZP suspensions stabilized by polyelectrolytes”, Ceram. Int., 26, p.187~191, (2000).27、Shojai F., Petersson A. B. A., Mantyla T., Rosenholm J. B., “Electrostatic and electrosteric stabilization of aqueous slips of 3Y-ZrO2 powders”, J. Eup. Ceram. Soc., 20,p.277~283, (2000).28、Tang F. Q., Huang X. X., Zhang Y. F., Guo J. K.,”Effects of dispersants on surfaces chemical properties of nano-zirconia suspensions”, Ceram. Int., 26, p.93~97, (2000).29、Jeong M. C., Fatih D.,”Colloidal processing of lead lanthanum zirconate titanate ceramics”, J. Mat. Sci., 36, p.2397~2403, (2001).30、Tari G., Ferreira J. M. F., Lyckfeldt O.,”Influence of Magnesia on Colloidal Procwssing of Alumina”, J. Eup. Ceram. Soc., 17,p.1341~1350, (1997).31、Hidber P. C., Graule T. J., Gauckler L. J., “Influence of toh Dispersant Structure on Properties of Electrostaically Stabilized Aqueous Alumina Suspensions”, J. Eup. Ceram. Soc., 17,p.239~249, (1997).32、Schmidt H. K., Nass R., Burgard D., Nonninger R., “Fabrication of agglomerate-free nanapowders by hydrothermal chemical processing”, Mat. Res. Soc. Symp. Proc., 520, p.21~31, (1998).33、Rijnten H.T., “Formation, preparation and properties of hydrous zirconia”, Chapter 7 in “Physical and chemical aspects of adsorbents and catalysts”, Linsen B.G. Ed., Academic press, NewYork, p316-372, (1970).34、Chang-J. J. Y., Su W. S., Huang M. H., “Sintering of 3mol% Yttria-doped Zirconia Powders Prepared by Water or 1-Octanol Extraction Variant of Sol-gel Process”, J. Mat. Sci. Eng., 32, p.179~185, (2000).35、Henry M., Jolivet J. P., Livage J., “Aqueoues Chemistry of Metal Cations, Hydrolysis, Condensation, and Complexation”, p.155, Springer-Verlag, Berlin, (1992).36、柯以侃,“儀器分析”,第十二章,p.410∼411,(1997)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊