(18.207.240.230) 您好!臺灣時間:2020/07/09 10:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:江博閔
研究生(外文):Bo-min Jiang
論文名稱:一個適用於自動供應雲端系統的動態調適計算架構
論文名稱(外文):A Dynamic Adaptive Computing Framework for Self-Provisioning Cloud Systems
指導教授:王尉任王尉任引用關係
指導教授(外文):Wei-Jen Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:60
中文關鍵詞:代理人系統自動供應自我調適雲端計算
外文關鍵詞:Cloud ComputingSelf-adaptationSelf-ProvisioningMulti-Agent System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
新興的雲端運算已經成為大部分國家的重點發展目標。然而現今在雲端環境上自動化與適應性計算的發展仍然是不足的。本研究結合代理人系統、雲端運算以及適應性計算的概念,提出一個在自動供應的雲端環境下,具有自我調適功能的架構。這個架構可以平行處理使用者所提交的工作,並可以在資源不足的狀況之下自動搬移工作到公用雲端的資源上。我們提出了兩種策略去解決系統負擔過重或是負載不平衡的問題。第一種策略是當系統負載不平衡時,代理人會自動的重新分配工作,讓系統能夠負載平衡。第二種策略是當系統發現有新的可用資源時,會將工作遷移到這些新發現的機器上去執行。假如所有系統負擔都過重的話,會自動的在公共雲上新增可用的運算資源供系統使用,這樣一來就可以增加整體效能。此外我們的系統具有容錯的功能,系統會週期性的將目前的狀態儲存下來,因此可以在發生錯誤之後從儲存點繼續進行計算。
The emerging cloud computing technology has become one of the urgent development goals in most developed countries. However, existing automatic/adaptive computing solutions in a cloud environment are still primitive. This work combines the concept of multi-agent systems, mobile agents, and cloud computing systems, and develops a framework to support self-provisioning, adaptability, and dynamic load balancing in a cloud environment. In the proposed framework, user can submit their applications, implemented as a group of mobile agents, to the proposed framework. When the system encounters the problem of system overloading or load imbalance, it will use two strategies to handle this problem. First, the mobile agents themselves can dynamically partition and redistribute the tasks to balance the load. Second, the system can notify the mobile agents to migrate to some free machines. If all resources are busy, the system can create more computing resources in the public cloud to increase the computing pool and to reduce the overall workload. In addition, the state of each application is periodically saved by the system to support fault tolerance.
摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
第1章. 緒論 1
1-1. 研究背景 2
1-2. 研究目標 7
1-3. 研究貢獻 10
1-4. 論文架構 11
第2章. 相關研究 12
2-1. 虛擬化工具 12
2-2. JADE(JAVE AGENT DEVELOPMENT FRAMEWORK) 14
2-3. MPI(MESSAGE PASSING INTERFACE) 16
2-4. 其他研究 17
第3章. 系統架構 18
3-1. 系統核心架構 18
3-1.1. 初始設定 20
3-1.2. Iterative Algorithm and Adaptive Computing Module 21
3-1.3. Communication Module 22
3-1.4. Predictor and Storage 23
3-1.5. Work Agent 27
3-2. 程式執行流程與程式的使用說明 28
第4章. 實驗結果 32
4-1. 實驗環境 32
4-2. 實驗結果與分析 33
4-2.1. 固定資源下的適應能力 33
4-2.2. 增加虛擬CPU對執行效能的影響 40
4-2.3. 動態資源下的適應能力 42
第5章. 結論 47
第6章. 未來展望 48
參考文獻 49
[1]“QoS in grid computing,” Internet Computing, IEEE, vol. 8, no. 4, pp. 85- 87, 2004.
[2]“Cloud Computing: Distributed Internet Computing for IT and Scientific Research,” Internet Computing, IEEE, vol. 13, no. 5, pp. 10-13, 2009.
[3]“雲端運算與政府組織改造,” 行政院經濟建設委員會.
[4] F. Berman et al., “Adaptive computing on the Grid using AppLeS,” IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 4, pp. 369- 382, 2003.
[5] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401- 420, 2006.
[6] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: current technology and future trends,” Computer, vol. 38, no. 5, pp. 39- 47, 2005.
[7] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,” IEEE Transactions on Software Engineering, vol. 24, no. 5, pp. 342-361, 1998.
[8] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in Networked Multi-Agent Systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, 2007.
[9] W.-J. Wang, K. E. Maghraoui, J. Cummings, J. Napolitano, B. K. Szymanski, and C. A. Varela, “A Middleware Framework for Maximum Likelihood Evaluation over Dynamic Grids,” in Proceedings of the Second IEEE International Conference on e-Science and Grid Computing, p. 105,2006.
[10] T. Desell, N. Cole, M. Magdon-ismail, H. Newberg, B. Szymanski, and C. Varela, “Distributed and generic maximum likelihood evaluation,” In 3rd IEEE International Conference on e-Science and Grid Computing , p. 8, 2007.
[11]"VMWare ",http://www.vmware.com/tw/solutions/cloud-computing/.
[12] Tiezhu Zhao, Yilong Ding, V. March, Shoubin Dong, and S. See, “Research on the Performance of xVM Virtual Machine Based on HPCC,” in ChinaGrid Annual Conference, pp. 216-221,2009.
[13] P. Barham et al., “Xen and the art of virtualization,” in ACM SIGOPS Operating Systems Review, New York, NY, USA, pp. 164–177, 2003.
[14] G. Caire, “Jade Tutorial,” Application-Defined Content Languages and Ontologies, 2002.
[15]“Jade: a high-level, machine-independent language for parallelprogramming,” Computer, vol. 26, no. 6, pp. 28-38, 1993.
[16]“MPI: A Message-Passing Interface Standard Version 2.1,” Message Passing Interface Forum, 2008.
[17]"MPICH2 : High-performance and Widely Portable MPI.", http://www.mcs.anl.gov/research/projects/mpich2/.
[18] S. Kaisler and W. H. Money, “Service Migration in a Cloud Architecture,” in 2011 44th Hawaii International Conference on System Sciences (HICSS), pp. 1-10, 2011.
[19] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Intelligent Workload Factoring for a Hybrid Cloud Computing Model,” in Proceedings of the 2009 Congress on Services - I, pp. 701–708,2009.
[20] W. Pedrycz and Keun-Chang Kwak, “The Development of Incremental Models,” in IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 507-518, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔