(34.204.189.171) 您好!臺灣時間:2019/10/16 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:江睿彬
研究生(外文):Ruei-Bing Chiang
論文名稱:無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
論文名稱(外文):Effect of the Electroless Ni Multi-wall CNT on the hydrogen storage properties of Mg-23.5wt.%Ni eutectic alloy
指導教授:李勝隆李勝隆引用關係
指導教授(外文):Sheng-Long Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:37
中文關鍵詞:PCIMg-23.5wt.%NiXRD儲氫合金
外文關鍵詞:Mg-23.5wt.%Ni、XRD、PCI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用熔煉法製備Mg-23.5wt.%Ni共晶合金,再利用球磨法合成含有經無電鍍鎳處理之5wt.%多壁奈米碳管(Electorless Nickel Multi Wall Carbon Nanotubes,EN-MWCNT )之複合儲氫材料,並藉由PCI及DSC測試,研究無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響。
研究中發現,無電鍍處理可將鎳析鍍於多壁奈米碳管上,其析鍍金屬顆粒大小為奈米等級,由於經無電鍍鎳處理之多壁奈米碳管具有移轉效應(spillover effect),其吸氫效果比未經無電鍍鎳處理之多壁奈米碳管佳,移轉效應可降低氫分子分解成氫原子所需的動能,並提供氫原子有利接觸合金之通道,加速氫化反應。球磨法亦可於多壁奈米碳管上生成缺陷提高其表面能,加強物理吸附能力。藉由添加無電鍍鎳多壁奈米碳管可改善Mg-23.5wt.%Ni共晶合金於低溫下之吸氫反應,於160℃與100℃下分別有4.39wt.%及4.22 wt.%的儲氫量。由DSC測試曲線得知,鑄態Mg-23.5wt.%Ni共晶合金添加無電鍍鎳多壁奈米碳管之MgH2放氫起始溫度(onset temperature)為363℃,相較於純鎂之放氫起始溫度408℃降低約45℃,但對於降低Mg2NiH4放氫起始溫度沒有明顯效果。
Mg-23.5wt.%Ni eutectic alloy were prepared by traditional melting and mixed with 5wt.% electorless nickel multi-wall carbon nanotubes by high energy ball milling for 5h,and we studied the effect of electroless nickel multi-wall carbon nanotubes on the hydrogen storage properties of Mg-23.5wt.%Ni eutectic alloy by PCI and DSC.
The experimental results show that electroless platting can get uniformly distributed nanoparticles on the surface of multi-wall carbon nanotubes which provied a spillover effect,thease reaction acceleration the dissociation of hydrogen molecules and improved the hydrogen storage properties at lower temperatures,the activated Mg-23.5wt.%Ni+5wt.%EN-MWCNT absorbed 4.22wt.% H2 and 4.39wt.% H2 at 100℃and160℃ for 60 min under 40 atm H2,the amount of dehydriding of the sample are nearly zero at 250℃. The DSC curves reveal endothermic peaks associated with hydride decomposition,the onset temperature of MgH2 is 363 ℃for the sample containing 5wt.% EN-MWCNT,which is lower than for the Mg sample(408 ℃) .
中文摘要 ii
Abstract iii
誌謝 iv
目錄 v
圖目錄 vi
表目錄 viii
一、文獻回顧 1
1-1前言 1
1-2儲氫合金儲放氫基本原理 3
1-3 Mg-Ni儲氫合金簡介 6
1-4催化劑-過渡元素、奈米碳管 8
1-5批覆技術-無電鍍法 9
1-6催化劑-無電鍍鎳多壁奈米碳管 10
二、研究背景與目的 13
三、實驗步驟與方法 14
3-1 Mg-23.5wt.%Ni共晶合金製備流程 15
3- 2球磨法製備合金 16
3-3 微結構分析 17
3-3-1 X光粉末繞射分析 17
3-3-2光學顯微鏡金相觀察與能量散佈光譜儀分析 17
3-3-3高解析掃描穿透式電子顯微鏡 17
3-4合金儲放氫性質測試 18
3-5熱式差掃描卡量計分析 18
四、結果與討論 18
4-1合金微結構分析 18
4-2無電鍍鎳多壁奈米碳管之結構分析 20
4-3 MN23.5合金添加無電鍍鎳多壁奈米碳管之結構分析 22
4-4吸放氫動態曲線 22
4-5 PCI曲線測試 26
4-6 DSC曲線分析 29
五、結論 31
六、參考文獻 32
[1] Carl-Jochen Winter ,“Hydrogen energy Abundant, efficient, clean: A debate over the energy-system-of-change”, international journal of hydrogen energy ,Vol.34,S1-S52. (2009)
[2] S. Shivkumar, C. Keller and D. Apelian , “The Influence of Molten
Metal Processing on Mechanical Properties of Cast Al-Si-Mg Alloys”, AFS Transactions, Vol.98, pp. 905-911.( 1990)
[3] U. Eberle ,”Hydrogen storage in metal-hydrogen systems and their derivatives”, Journal of Power Sources, Vol.154 , pp.456-460. (2006)
[4] C. Sealy,” The problem with platinum”, Materials Today, Vol.11,pp. 65-68. (2009)
[5] J. A. Ritter, A. D. Ebner , J. Wang, R. Zidan ,” Implementing a hydrogen economy”, Materials Today, Vol.6, p. 18. (2003)
[6] K. L. Lim, H. Kazemian, Z. Yaakob , W. Daud , “Solid-state materials and methods for hydrogen storage: a vritical review”, Chem. Eng. Technol., vol.33, p. 213. (2010)
[7] “Basic research needs for the hydrogen economy- report of the basic   energy sciences workshop on hydrogen production, storage, and use”, Argonne National Laboratory, U.S. Department of Energy, Second edition, February 2004, available at : http://www.sc.doe.gov/bes/hydrogen.pdf.
[8] J. Huot, Chapter 16 - kinetics and thermodynamics, “Hydrogen Technology”, Springer-Verlag Berlin Heidelberg,pp.472-499. (2008)
[9] G. E. Froudakis ,” Hydrogen interaction with carbon nanotubes : a review of ab initio studies”, J. Phys., Condens. Matter. , Vol.14, R453. (2002)
[10] G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds ,Vol.293-295,pp.877-888. (1999)
[11] Schlapbach L, Zuttel A. , ”Hydrogen-storage materials for mobile applications.”, Nature ,Vol.414, pp. 353-358. (2001)
[12]A. Zuttel, “Materials for Hydrogen Storage”, Materials Today, Vol. 6,pp. 24-33.(2003)
[13] A. Zaluska , L. Zaluski, J.O. Strom–Olsen, “Nanocrystalline magnesium for hydrogen storage”, Journal of Alloys and Compounds, Vol.288, pp.217-225. (1999)
[14] Hoffman KC, Reilly JJ, Salzano FJ, Waide CH, Wiswall RH, Winsche WE. “Metal hydride storage for mobile and stationary applications. “, Int. , J. , Hydrogen Energ. , Vol. 1, pp.133-151. (1976)
[15] Shang CX, Bououdina M, Song Y, Guo ZX. “Mechanical alloying
and electronic simulations of (MgH2+M) systems (M = Al、Ti、
Fe、Ni、Cu and Nb) for hydrogen storage.”, Int. J. Hydrogen Energ
,Vol.29, pp.73-80. (2004)
[16] Xiaofeng Liu1,Yunfeng Zhu, Liquan Li,”Hydriding characteristics of Mg2Ni prepared by mechanical milling of theproduct of hydriding combustion synthesis”, International Journal of Hydrogen Energy, Vol. 32, pp.2450-2454. (2007)
[17] A.A. Nayeb-Hashemi , “Alloy Phase Diagrams”,Vol.6, p.238.(1985)
[18] J.J. Reilly,“The Reaction of Hydrogen with Alloys ofMagnesium and Nickel and the Formation of Mg2NiH4”, Inorganic Chemistry,Vol. 7, pp.2254-2256. (1968)
[19]Chang Dong Yim , ”Hydriding properties of Mg–xNi alloys with different microstructures”, Catalysis Today,Vol.120, pp.276-280. (2007)
[20] G. Liang, S. Boily, J. Huot, A. Van Neste, R. Schulz, J. Alloys Comp.,Vol.268,p. 302. (1998)
[21] E. Ma, J. Pagán, G. Cranford, M. Atzmon,” Evidence for self-sustained MoSi2 formation during room-temperature high-energy ball milling of elemental powders”, Journal of Materials Research,Vol.8, pp.1836-1844.(1993)
[22]C.Suryanarayana, ”Mechanical Alloying and Milling”, Prog. Master Sci.,Vol.46 ,p.1 .(2001)
[23] SungNam Kwona, SungHwan Baeka, Daniel R. Mummb, Seong-Hyeon Hongc, MyoungYoup Songd,” Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti”, International Journal of Hydrogen Energy , Vol.33,pp.4586-4529. (2008)
[24] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, No. 6348, pp. 56-58.(1991)
[25] Sima Aminorroaya, Hua Kun Liu, Younghee Cho, Arne Dahle, “Microstructure and activation characteristics of Mg-Ni alloy modified by multi-walled carbon nanotubes”, International Journal of Hydrogen Energy,Vol. 35,pp.4144-4153. (2010)
[26] X. Yao, C. Wu, A. Du, J. Zou, Z. Zhu, P. Wang, H. Cheng, S. Smith, G. Lu, J. Am.,” Metallic and Carbon Nanotube-Catalyzed Coupling of Hydrogenation in Magnesium”, Chem. Soc., Vol.129, pp.15650-15654.(2007)
[27] G. Liang, R.J. Schulz, Mater. Sci., Vol. 38, p.1179.(2003)
[28] J.J. Reilly, R.H. Wiswall, “Higher hydrides of vanadium and niobium”, Inorg. Chem. , Vol.9 p.1678.(1970)
[29] I. Takagi, T. Sugihara, T. Sasaki, K. Moritani, H. Moriyama. “Potential energy diagram for hydrogen near vanadium surface”, J. Alloys Compd.,Vol.329-333, p. 434.(2004)
[30] X. Yao, C.Z. Wu, H. Wang, H.M. Cheng, G.Q. Lu. J.” Effects of carbon nanotubes and metal catalysts on hydrogen storage in Mg-based nanocomposites” , J. Nanoscience and nanotechnology ,Vol.6,pp. 494-498.(2006)
[31] Z.G. Huang, Z.P. Guo, A. Calka, D. Wexler, H.K. Liu, “Improvement in hydrogen cycling properties of magnesium through added graphite “, Materials Letters,Vol.61, p.3163. (2007)
[32]R. Zacharia、K. Y. Kim、A. K. M. F. Kibria、K. S. Nahm,“Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles”,Chem. Phys. Lett.,Vol.412,p. 369. (2005)
[33] H. W. Zhu、A. Chen、Z. Q. Mao、C. L. Xu、X. Xiao、B. Q. Wei、J. Liang, D. H. Wu,”The effect of surface treatments on hydrogen storage of carbon nanotubes”,Mater. Sci.Lett.,Vol.19,p.1237. (2000)
[34]F. Liu、X. Zhang、J. Cheng、 J. Tu、F. Kong、 W. Huang 、C. Chen,“Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior”,Carbon ,Vol.41,p.2527. (2003)
[35] C. Bittencourt, A. Felten, J. Ghijsen, J. J. Pireaux, W. Drube, R. Erni, “Decorating carbon nanotubes with nickel nanoparticles”, Chem. Phys. Lett.,Vol.436,p. 368.(2007)
[36] S. Arai, M. Endo, N. Kaneko, “Ni-deposited multi-walled carbon nanotubes by electrodeposition”, Carbon, Vol.42, p. 641. (2004)
[37] A. D. Lueking, R. T. Yang, “Hydrogen spillover to enhance hydrogen storage -study of the effect of carbon physicochemical properties”, Appl. Cat. A, Vol.265, p. 259.(2004)
[38] G. E. Froudakis, “Hydrogen interaction with carbon nanotubes : a review of ab initiostudies”, J. Phys., Condens. Matter., Vol.14, R453.(2002)
[39] J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, S. Yip, “Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures”, J. Chem. Phys., Vol.119, p.2376.(2003)
[40]G. O.Mallory, J. B. Hajdu, “Electroless plating: Fundamentals and
Applications.”, American Electroplaters and Surface Finishers Society. (1990)
[41] G. O. Mallory and J. B. Hajdu, “Electroless Plating : Fundamentals and Applications”, AESF, Orlando, Florida, Chap.1, USA,. (1990)
[42] H. H. Hsu、K. H. Lin、S. J. Lin and J. –W. Yeh ,” Electroless Copper Deposition for Ultralarge-Scale Integration” ,J. Electrochem. Soc., Vol.148,C47-C53. (2001)
[43] V. M. Dubin,“Electroless Ni-P Deposition on Silicon with Pd Activation”, J. Electrochem. Soc. ,Vol. 139,pp. 1289-1294. (1992)
[44] R. L. Jackson,“Pd+2/Poly(acrylic acid) Thin Films as Catalysts for Electroless Copper Deposition: Mechanism of Catalyst Formation”,Vol.137,pp.95-101. (1990)
[45] C. M. Liu、W. L. Liu、S. H. Hsieh、T. K. Tsai and W. J. Chen, “Interfacial Reactions of Electroless Nickel Thin Films on Silicon”, Appl. Surf. Sci.,Vol.243,pp. 259-264. (2005)
[46] H. J. Zhang、X. W. Wu, and Q. L. Jia,“Preparation and Microwave Properties of Ni-SiC Ultrafine Powder by Electroless Plating”,Mater. Des.,Vol.28,pp.1369-1373. (2007)
[47] Kuan-Yu Lin、Wen-Ta Tsai、Tsong-Jen Yang,” Effect of Ni nanoparticle distribution on hydrogen uptake in carbon nanotubes ” Journal of Power Sources (2010) in press.
[48] Qingrong Zheng、Anzhong Gu、Xuesheng Lu、 Wensheng Lin,” Temperature-dependent state of hydrogen molecules within the
nanopore of multi-walled carbon nanotubes”, International Journal of Hydrogen Energy,Vol.29,pp. 481-489.(2004)
[49] A. Zolfaghari、P. Pourhossein、H.Z. Jooya,” The effect of temperature and topological defects on H2 adsorption on carbon nanotubes”,International Journal of Hydrogen Energy (2010)in press
[50] Bhatia SK、Myers AL. ,”Optimum conditions for adsorptive
Storage”, Langmuir,Vol.22,pp.1688-700. (2006)
[51] G. Liang,” Mechanical alloying and hydrogen absorption properties of the Mg–Ni system”,Journal of Alloys and Compounds,Vol. 267,pp. 302- 306. (1998)
[52] Nam Hoon Goo、Jung Hoon Woo、Kyung Sub Lee,”Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel”,Journal of Alloys and Compounds ,Vol.288,pp.286–293. (1999)
[53] Liquan Li、Tomohiro Akiyama、Jun-ichiro Yagi,” Reaction mechanism of hydriding combustion synthesis of Mg2NiH4”, Intermetallics ,Vol.7,pp. 671-677. (1999)
[54] Liquan Li、Tomohiro Akiyama、Jun-ichiro Yagi,”Activation behaviors of Mg2NiH4 at different hydrogen pressures in hydriding combustion synthesis”,International Journal of Hydrogen Energy ,Vol.26,pp.1035–1040. (2001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔