(3.231.226.13) 您好!臺灣時間:2020/05/27 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:沈杰倫
研究生(外文):Jie-Lun Shen
論文名稱:等通道轉角擠型製程對含Sc之Al-Mg合金微結構及機械性質之影響
指導教授:李勝隆
指導教授(外文):Sheng-Long Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:59
中文關鍵詞:等通道轉角擠型Sc含量動態回復再結晶
外文關鍵詞:equal-channel-angular-extrusionSc contentrecrystallizationdynamic recovery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
等通道轉角擠型(ECAE)製程具有許多優點,擠製時可旋轉角度來控制材料之變形結構,而經由多次擠製可使材料的塑性變形量達到相當大的程度,且擠製後之材料截面積不會改變,同時亦可獲得均勻且細晶之材料結構。於鋁合金中添加Sc元素能有效細化晶粒及提升合金再結晶溫度,且Al3Sc相於高溫下能有效使晶粒保持細小且穩定之結構。
本研究利用等通道轉角擠型(ECAE)製程對不同Sc含量之Al-5Mg-0.7Mn合金進行擠製,藉以瞭解ECAE製程與Sc含量(0wt.%、0.3wt.%、0.58wt.%)對合金微結構及機械性質之影響,並觀察不同溫度下進行退火處理後之微結構穩定性及其影響程度,且對擠型後之細晶材料進行高溫拉伸測試,評估其超塑性表現。
實驗結果指出,添加0.3wt.%Sc即可使鑄態Al-5Mg-0.7Mn合金晶粒細化,而合金強度因細晶強化作用而提升。於300℃下進行ECAE Route BC之方式擠型,可使合金達到細化效果且獲得均勻之微結構,而合金內部極易發生動態回復作用,使得加工硬化率下降。鑄造晶出之Al3Sc相於高溫下能有效阻止晶界移動,提升合金再結晶溫度,此有助於提升合金之高溫延伸率。於450℃下以1×10-2S-1及5×10-2S-1速率進行拉伸,含Sc之合金延伸率皆可達300%以上。
摘要………………………………………………………………… Ⅰ
謝誌………………………………………………………………… Ⅱ
總目錄…………………………………………………………….. Ⅲ
圖目錄…………………………………………………………….. Ⅴ
表目錄…………………………………………………………….. Ⅶ

壹、前言…………………………………………………………… 1
一、Al-Mg合金簡介……..………………………………….. 1
二、Sc對鋁合金之影響………………...…………………… 1
三、加工方式…………………………...……………………. 5
四、超塑性………………………………………………..….. 11
五、實驗目的與設計………………………………………… 13
貳、實驗步驟與方法……………………………………………… 15
一、鑄造、擠型與退火處理..……………………………….. 15
1.合金配製及成分分析……………………………………. 15
2.等通道轉角擠型(ECAE)………………………………… 15
3.退火處理…………………………………………………. 17
二、微結構分析…………..………………………………….. 19
1 OM金相觀察……………………………………………… 19
2.穿透式電子顯微鏡觀察(TEM)….………………………. 19
3.導電度量測(IACS%).……………………………………. 19
三、機械性質分析…………………………………………… 21
1.微硬度試驗……………………………….………..…….. 21
2.常溫拉伸試驗…………………………….……………… 21
3.高溫拉伸試驗……….……………………………..…….. 21
參、結果與討論…………………………………………………… 23
一、微結構分析……………………………………………… 23
1.鑄態及ECAE金相觀察…………………………….……. 23
1.1 OM金相觀察………………………………………… 23
1.2穿透式電子顯微鏡觀察(TEM)……………………... 29
1.3導電度量測(IACS%)………………………………... 33
2.退火金相觀察……………………………………………. 33
二、機械性質分析………………………….………………... 42
1.硬度試驗…………………………………………………. 42
1.1鑄態及ECAE擠型…………………………………. 42
1.2退火處理……………………………………………. 44
2.常溫拉伸試驗……………………………………………. 46
3.高溫拉伸試驗……………………………………………. 46
肆、結論…………………………………………………………….54
伍、未來研究方向………………………………………………… 55
陸、參考資料……………………………………………………… 56
1.李勝隆、吳信田 “Al-4.8%Mg合金熱加工性之研究”材料科學論文集第17A卷, 第1期, 1985, pp.91-104
2.“鋁合金通論”, 第一章, pp.1-12~1-13
3.R. Kaibyshev, F. Musin, D.R. Lesuer, T.G. Nieh “Superplastic behavior of an Al-Mg alloy at elevated temperatures” Material Science & Engineering, A342, 2003, pp.169-177
4.Vladivoj Ocenasek, Margarita Slamova “Resistence to recrystallization due to Sc and Zr addition to Al-Mg alloys” Materials Characterization, 47, 2001,pp.157-162
5.John S. Vetrano, Steve M. Bruemmer, L.M. Pawlowski, I.M. Robertson “Influence of the particle size on recrystallization and grain growth in Al-Mg-X alloys” Material Science & Engineering, A238, 1997, pp.101-107
6.Zhimin Yin, Qinglin Pan, Yonghong Zhang, Feng Jiang “Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Mg based alloys” Material Science & Engineering, A280, 2000, pp.151-155
7.Hideaki Hasegawa, Shogo Komura, Atsushi Utsunomiya, Zenji Horita, Minoru Furukawa, Minoru Nemoto, Terence G. Langdon “Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions” Material Science & Engineering, A265, 1999, pp.188-196
8.D.Y. Maeng, J.H. Lee, S.I. Hong “The effect of transition elements on the superplastic behavior of Al-Mg alloys” Material Science & Engineering, A357, 2003, pp.138-195
9.M.A. Munoz-Morris, C. Garcia Oca, G. Gonzalez-Doncel, D.G. Morris “Mircostructural evolution of dilute Al-Mg alloys during processing by equal channel angular pressing and during subsequent annealing” Material Science & Engineering, A375-377, 2004, pp.853-856
10.L.K. Lamikov and G.V. Samsonov, “Soviet Non-Ferrous Metals Res.” (USSR), 1964,9,79
11.K.Venkateswarlu, L.C. Pathak, A.K. Ray, Goutam Das, P.K. Verma, M. Kumar, R.N. Ghosh, “Microstructure, tensile strength and wear behaviour of Al-Sc alloy”, Material Science & Engineering, A383, 2004, pp.374-380
12.D. N. Seilman, E. A. Marquis, and D. C. Dunand, “Precipitation Strengthening at Ambient and Elevated Temperature of Heat-Treatable Al(Sc) Alloys” Acta Materialia, Vol.50, 2002, pp.4021-4035
13.劉偉隆、林淳杰、曾春風、陳文照 “物理冶金” 全華科技圖書股份有限公司, pp.8-1∼8-45,23-1∼23-10
14.A. F. Noraman, P.B.Prangnell and R. S. McEwen, “The Solidification Behavior Of Dilute Aluminum-Scandium Alloys.” Acta mater., Vol.46, 1998, pp.5715-5732
15.W. Blum, Q. Zhu, R. Merkel, H.J. McQueen, “Geometric Dynamic Recrystallization In Hot Torsion Of Al-5Mg-0.6Mn (AA5083)” Mater. Sci. and Eng., A205, 1996, pp.23-30.
16.Emmanuelle. A. Marquis, and David. N. Seidman, “Microstructural Evolution Of Al3Sc Precipitates By Three-Dimensional Atom-Probe Miccroscopy”, Materials science and engineering department, Northwestern University, Evanston, IL, 60208-3108, USA
17.T.G. Nieh, R. Kaibyshev, L.M. Hsiung, N. Nguyen, J. Wadsworth “Subgrain formation and evolution during the deformation of an Al-Mg-Sc alloy at elevated temperatures” Acta Metallurgica, Vol.36, 1996, pp.1011-1016
18.Kyung-Tae Park, Duck-Young Hwang, Young-Kook Lee, Young-Kuk Kim, Dong Hyuk Shin “High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation” Material Science & Engineering, A341, 2003, pp.273-281
19.F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh “High strain rate superplasticity in a commercial Al-Mg-Sc alloy” Scripta Materialia, 50, 2004, pp.511-516
20.S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T.G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys” Acta Materialia, 50, 2002, pp.553-564
21.R. Kaibyshev, F. Musin, D.R. Lesuer, T.G. Nieh “Superplastic behavior of an Al-Mg alloy at elevated temperatures” Material Science & Engineering, A342, 2003, pp.169-177
22.R.M. Cleveland, A.K. Ghosh, J.R. Bradley, “Comparison of superplastic behavior in two 5083 aluminum alloys”, Material Science & Engineering, A351, 2003, pp.228-236
23.Minoru Furukawa, Zenji Hotita, Minoru Nemoto, Terence G. Langgon, “The use of severe plastic deformation for microstructural control”, Material Science & Engineering, A324, 2002, pp.82-89
24.李士瑋“往復式擠型法製成微米級晶粒5083合金微結構及性質之探討”國立清華大學碩士論文,1998
25.袁禧雵“利用往復式擠型改善合金微結構及性質之研究”國立清華大學博士論文, 1999
26.X. Huang, N. Tsuji, N. Hansen, Y. Minamino, “Microstructural evolution during accumulative roll bonding of commercial purity aluminum” Material Science & Engineering, A340, 2003, pp.265-271
27.V.M. Segal “Materials processing by simple shear ” Material Science & Engineering, A197, 1995, pp.157-164
28.M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Longdon “The shearing characteristics associated with equal-channel angular pressing” Material Science & Engineering, A257, 1998, pp.328-332
29.M.V. Markushev, M.Yu. Murashkin “Structure and mechanical properties of commercial Al-Mg 1560 alloy after equal-channel angular extrusion and annealing ” A367, 2004, pp.234-242
30.C.P. Chang, P.L. Sun, and P.W. Kao “Deformation induced grain boundaries in commercially pure aluminum”, Acta Materialia, 2000, Vol 48, pp.3377-3385
31.Robert E. Reed-Hill, Reza Abbaschian “Physical Metallurgy Principles Third Edition” pp.227-269,836-844
32.劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚 “工程材料科學”全華科技圖書股份有限公司, 1999, pp.334-343
33.蕭一清“5083鋁合金低溫超塑性研發與變形機構分析”國立中山大學博士論文,2001
34.O.D. Sherby and J. Wadsworth, “Superplastic-Recent Advances and Future Direction”, Prog.In Mater.Sci., 1989,33,169,
35.R.C. Lobb, E.C. Sykes and R.H. Johnson, “Internal Stress Superplasticity in Some Materials”, Met.Sci., 1972,19,6
36.O.A. Ruano, J. Wadsworth and O.D. Sherby, “Enhanced Densification of White Cast Iron Powders by Cyclic Phase-Transformations under Stress”, Metall.Trans., 1982,13A,355
37.Yoshinori Iwahashi, Jingtao Wang, Zenji Horita, Minoru Nemoto and Terence G. Langdon “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials” Acta Metallurgica, Vol.35, 1996, pp.143-146
38.C.H. Worner and P.M. Hazzledine “Grain Growth Stagnation by Inclusions or Pores”, JOM, 1992, Sep, 16
39.P. Zwigl and D.C. Dunand “A Non-Liner Model for Internal Stress Superplasticity”, Acta Metallurgica, Vol 45, 1997, pp.5285-5294
40.ASTM E112-88, Annual Book of ASTM Standards, Vol. 03.01, 1990
41.黃盈源, “鋁鎂合金等徑轉角擠製處之與擠製溫度關係之研究”,國立中山大學碩士論文, 1999
42.E. A. Marquis and D. N. Seidman, “Nanoscale Structure Evolution Of Al3Sc Precipitation in Al(Sc) Alloys”, Acta Mater., Vo.49, 2001, pp1909-1919
43.John E. Gruzleski, Bernard M. Closset, “The Treatment of Liquid Aluminum-Silicon Alloys”, The American Foundrymen’s Society, Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔