跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.49) 您好!臺灣時間:2023/02/01 14:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪家育
研究生(外文):Jia-Yu Hong
論文名稱(外文):Noise free Attribute oriented induction
指導教授:陳彥良陳彥良引用關係
指導教授(外文):Yen-Liang Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:103
中文關鍵詞:屬性導向歸納法概念階層關連式資料資料挖礦干擾值
外文關鍵詞:attribute oriented inductionconcept treerelation datasetdata miningnoise data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
屬性導向歸納方法(簡稱AOI方法)主要是被發展來挖掘關連式資料庫的一般化知識,這種方法的輸入包括一個關連式資料表和一組與資料表屬性相關的概念階層 (或稱為概念樹) 。它是一種以歸納為基礎的資料分析技術,將關聯式表格 (Relational Dataset) 資料集合中的每一個屬性,檢查其資料分佈,以決定應歸納到哪個相關的抽象層級。但是因為屬性導向歸納方法很容易受到干擾值 (noise) 的影響,使得歸納出的結果的一般化特徵過於粗略。對於此問題,本論文提出一個以AOI方法為基礎的Noise-free AOI方法,此演算法能將資料中的干擾值(Noise data)過濾掉,讓屬性導向歸納法找出的一般化特徵更加明確。
Attribute oriented induction ( AOI for short) was developed mainly to mine generalized knowledge of relational dataset, this approach include a relational dataset and a set of attributes associated with concept (or concept tree). It is a kind of generalize -based data analysis techniques, and the relational Dataset in each of the properties, checking its data distribution to determine which should be grouped into relevant levels of abstraction. But attribute oriented induction method is very susceptible to interference noise effects, so the results of the generalization features too sketchy. For this problem, this paper proposes a method based AOI, is Noise-free AOI methods. This algorithm can filter out the noise data, so that Noise free AOI can generalize more clearly.
目錄
圖目錄 2
表目錄 3
第一章、簡介 6
1.1 屬性導向歸納方法簡介 6
1.2 研究動機 7
1.3 研究目的 9
第二章、文獻探討 10
2.1 屬性導向歸納背景介紹 11
2.2 提升屬性導向歸納效率的方法 15
2.3 解決傳統屬性導向歸納使用上的問題 15
2.4 屬性導向歸納模糊概念層級階層的應用 15
2.5 以基本的屬性導向歸納方法為基礎進行擴充 16
2.6 整合其他 AOI 的應用 16
第三章、問題定義 17
第四章、演算法 24
4.1 Algorithm 1: 24
4.2 Algorithm 2: 25
第五章、實驗 27
第六章、結論 44
第七章、參考文獻 44
附錄A 48
附錄B 50

[1] Cai, Y. (1989). Attribute-oriented induction in relational databases (Doctoral dissertation, Simon Fraser University).
[2] Carter, C. L., & Hamilton, H. J. (1998). Efficient attribute-oriented generalization for knowledge discovery from large databases. Knowledge and Data Engineering, IEEE Transactions on, 10(2), 193-208.
[3] Cheung, D. W., Hwang, H. Y., Fu, A. W., & Han, J. (2000). Efficient rule-based attribute-oriented induction for data mining. Journal of Intelligent Information Systems, 15(2), 175-200.
[4] Huang, S. M. (2013). CFAOI: Concept-Free AOI on Multi Value Attributes. Life Science Journal, 10(4).
[5] Hsu, C. C. (2004). Extending attribute-oriented induction algorithm for major values and numeric values. Expert Systems with Applications, 27(2), 187-202.
[6] Yager, R. R., & Petry, F. E. (2006). A multicriteria approach to data summarization using concept ontologies. Fuzzy Systems, IEEE Transactions on, 14(6), 767-780.
[7] Angryk, R. A., & Petry, F. E. (2006). Knowledge discovery in fuzzy databases using attribute-oriented induction. In Foundations and Novel Approaches in Data Mining (pp. 169-196). Springer Berlin Heidelberg.
[8] Lee, K. M. (2001, July). Mining generalized fuzzy quantitative association rules with fuzzy generalization hierarchies. In IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th (pp. 2977-2982). IEEE.
[9] Knorr, E. M., & Ng, R. T. (1996, August). Extraction of Spatial Proximity Patterns by Concept Generalization. In KDD (pp. 347-350).
[10] Chen, Y. L., & Shen, C. C. (2005). Mining generalized knowledge from ordered data through attribute-oriented induction techniques. European Journal of Operational Research, 166(1), 221-245.
[11] Muyeba, M., Crockett, K., & Keane, J. (2011). A hybrid interestingness heuristic approach for attribute-oriented mining. In Agent and Multi-Agent Systems: Technologies and Applications (pp. 414-424). Springer Berlin Heidelberg.
[12] Knorr, E. M., & Ng, R. T. (1996, August). Extraction of Spatial Proximity Patterns by Concept Generalization. In KDD (pp. 347-350).
[13] Wang, L. Z., Zhou, L. H., & Chen, T. (2004, August). A new method of attribute-oriented spatial generalization. In Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on (Vol. 3, pp. 1393-1398). IEEE.
[14] Lu, W., Han, J., & Ooi, B. C. (1993, June). Discovery of general knowledge in large spatial databases. In Proc. Far East Workshop on Geographic Information Systems, Singapore (pp. 275-289).
[15] Liu, Q. H., Tang, C. J., Li, C., Liu, Q. W., Zeng, T., & Jiang, Y. G. (2007). Traditional Chinese Medicine prescription mining based on attribute-oriented relevancy induction. Jisuanji Yingyong/ Journal of Computer Applications,27(2), 449-452.
[16] Tsumoto, S. (2000). Knowledge discovery in clinical databases and evaluation of discovered knowledge in outpatient clinic. Information Sciences, 124(1), 125-137.
[17] Al-Mamory, S. O., & Zhang, H. (2009). Intrusion detection alarms reduction using root cause analysis and clustering. Computer Communications, 32(2), 419-430.
[18] Julisch, K. (2003). Clustering intrusion detection alarms to support root cause analysis. ACM Transactions on Information and System Security (TISSEC),6(4), 443-471.
[19] Li, S. T., Shue, L. Y., & Lee, S. F. (2008). Business intelligence approach to supporting strategy-making of ISP service management. Expert Systems with Applications, 35(3), 739-754.
[20] Sun, J., & Li, H. (2008). Data mining method for listed companies’ financial distress prediction. Knowledge-Based Systems, 21(1), 1-5.
[21] Zhu, X. D., & Huang, Z. Q. (2008). Conceptual modeling rules extracting for data streams. Knowledge-Based Systems, 21(8), 934-940.
[22] Xu, Z. (2008). On multi-period multi-attribute decision making. Knowledge-Based Systems, 21(2), 164-171.
[23] X. Zhu, Z. Huang, Conceptual modeling rules extracting for data streams, Knowledge-Based Systems 21 (8) (2008) 934–940.
[24] Z. Xu, On multi-period multi-attribute decision making, Knowledge-Based Systems 21 (2) (2008) 164–171.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top