(18.207.240.230) 您好!臺灣時間:2020/07/09 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:涂崢嶸
研究生(外文):Cheng-Jung Tu
論文名稱:多層多跨具自復位梁柱接頭隅撐構架之耐震性能研究
論文名稱(外文):Seismic performance of multi-bay-multi-story knee braced frames with dual self-centering mechanisms
指導教授:許協隆
指導教授(外文):Hsieh-lung Hsu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:140
中文關鍵詞:多跨多層構架雙重自復位機制能量消散耐震效能
外文關鍵詞:Multi-bay-multi-story frameDual self-centering mechanismsEnergy dissipationSeismic performance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:68
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隅撐抗彎構架為近年來發展之新型結構系統,其可改善抗彎構架側向勁度不足之問題,亦可有較同心斜撐構架良好之韌性,然當隅撐構架受側向力作用,受壓側之隅撐會產生挫屈行為,導致構架強度驟降,故近年來發展了雙重自復位機制以改善此問題,而雙重自復位機制由具自復位梁柱接頭與自復位隅撐組成。由於實際工程應用上,結構係屬多層多跨形式,故本研究針對具雙重自復位多層多跨構架進行反覆載重試驗,以界定其耐震性能。研究結果顯示,雙重自復位構架可較同尺度之抗彎構架提升 1.66~1.69 倍之構架強度,其勁度亦可提升約 2.91 倍。研究中亦發現,自復位梁柱接頭配置角鋼摩擦消能機制可較無配置者提升約2.38倍之能量消散。另構架在預力系統保持彈性階段時,皆具有良好之自復位能力,可有效降低結構之殘餘變形,且當雙重自復位構架之上層與下層梁柱接頭之結合彎矩比例為1:1.5時,在相同頂層位移下,較上層與下層梁柱接頭之結合彎矩比例為1:1時,提供構架較佳變形能力。研究結果證實,雙重自復位機制可提供構架良好之變形能力與強度,並可有效延後梁構件降伏時機,達到提升結構耐震性能之目的。
Knee braced moment resisting frame (KBRF) has been developed in recent years. The KBRF system possesses higher stiffness than the moment resisting frame (MRF) and larger ductility than the concentrically braced resisting frame (CBRF), thus is a suitable structural form for earthquake-resistant purposes. However, when the KBRF is subject to heavy cyclic load, the knee braces that contribute to the structural strength will reach the buckling stage, causing major loss in structural performance. In order to improve the structural performance of the KBRF system, a modified design using dual self-centering mechanisms in the knee brace members and the beam-to-column connections was proposed in this study. A set of copper plates were used in the beam-to-column connections to dissipate energy through friction mechanism. A series of cyclic loading tests were conducted on the multi-bay-multi-story KBRFs to evaluate their performance.
It was found from the tests that the strength, stiffness and energy dissipation capacity of KBRF with dual self-centering mechanisms was higher than the MRF with equivalent dimensions. Test results also showed that the major structural members, including beams and columns, remained intact when the structural was subject to large drift, which justified the effectiveness of the proposed method. Further comparisons on the structural performance suggested that the ratio of joint decompression strength between lower and upper stories be approximately 1.5 so that higher structural performance could be achieved.

摘要……………………………………………………………………………………I
ABSTRACT…………………………………………………………………………II
誌謝………………………………………………………………………………III
目錄…………………………………………………………………………………V
表目錄………………………………………………………………………………X
圖目錄……………………………………………………………………XI
照片目錄……………………………………………………………………XV
第一章 緒論………………………………………………………………………1
1-1前言………………………………………………………………………………1
1-2研究動機與目的…………………………………………………………………3
1-3研究內容…………………………………………………………………………4
1-4論文架構…………………………………………………………………………5
第二章 文獻回顧……………………………………………………………………6
2-1國內外相關研究………………………………………………………………6
2-1-1抗彎構架相關研究……………………………………………………………6
2-1-2梁柱接頭相關研究……………………………………………………………6
2-1-3斜撐構架相關研究……………………………………………………………8
2-1-4隅撐構架相關研究……………………………………………………………9
2-1-5預力結構相關研究…………………………………………………………10
2-2鋼結構設計相關規定……………………………………………………………13
2-2-1強柱弱梁設計………………………………………………………………13
2-2-2梁斷面要求…………………………………………………………………14
2-2-3梁柱腹板交會區設計………………………………………………………15
2-2-4含被動消能系統建築物之設計……………………………………………16
第三章 理論分析與有限元素模型建立……………………………………………18
3-1構架勁度與強度分析……………………………………………………………18
3-1-1線性階段分析………………………………………………………………18
3-1-2多層多跨構架勁度與雙重自復位配置之關係……………………………18
3-2有限元素分析……………………………………………………………………24
3-2-1ABAQUS/Standard分析模組………………………………………………24
3-2-2ABAQUS/CAE前後處理模組………………………………………………24
3-3有限元素模型建置………………………………………………………………26
3-3-1部件模組(Part)………………………………………………………………26
3-3-2組裝模組(Assembly)………………………………………………………27
3-3-3屬性模組(Property)…………………………………………………………27
3-3-4交互作用模組(Interaction)…………………………………………………28
3-3-5分析步模組(Step)……………………………………………………………28
3-3-6負載模組(Load)……………………………………………………………29
3-3-7網格模組(Mesh)……………………………………………………………29
3-3-8作業模組(Job)………………………………………………………………30
3-4結語………………………………………………………………………………30
第四章 實驗規劃及流程……………………………………………………………32
4-1前言………………………………………………………………………………32
4-2實驗規劃…………………………………………………………………………32
4-3研究參數…………………………………………………………………………33
4-4試體編號及試驗群組……………………………………………………………33
4-5試體製作…………………………………………………………………………34
4-6實驗設備………………………………………………………………………34
4-7試驗方法…………………………………………………………………………35
4-7-1雙層單跨自復位梁柱接頭構架試驗方法…………………………………35
4-7-2雙層單跨雙重自復位構架試驗方法………………………………………36
4-7-3雙層雙跨自復位梁柱接頭構架試驗方法…………………………………37
4-7-4雙層雙跨雙重自復位構架試驗方法………………………………………38
4-8加載方式…………………………………………………………………………39
第五章 實驗觀察與討論……………………………………………………………40
5-1前言………………………………………………………………………………40
5-2實驗觀察…………………………………………………………………………40
5-2-1雙層單跨構架試驗…………………………………………………………40
5-2-1-1具自復位梁柱接頭雙層單跨構架……………………………………40
5-2-1-2具雙重自復位雙層單跨構架…………………………………………43
5-2-1-3小結……………………………………………………………………45
5-2-2雙層雙跨構架試驗…………………………………………………………46
5-2-2-1具自復位梁柱接頭雙層雙跨構架……………………………………46
5-2-2-2具雙重自復位雙層雙跨構架…………………………………………48
5-2-2-3小結……………………………………………………………………50
第六章 實驗結果分析與討論………………………………………………………51
6-1前言………………………………………………………………………………51
6-2構架強度分析……………………………………………………………………51
6-2-1雙層單跨自復位梁柱接頭構架與雙重自復位隅撐構架試驗比較……51
6-2-2不同雙重自復位機制配置之雙層單跨構架比較…………………………52
6-2-3雙層雙跨自復位梁柱接頭構架與雙重自復位隅撐構架試驗比較………52
6-3構架勁度分析……………………………………………………………………53
6-4自復位機制與樓層承載行為關係………………………………………………54
6-4-1雙層單跨具自復位梁柱接頭構架SC*-Ln-Ln……………………………54
6-4-2雙層單跨具自復位梁柱接頭構架SC-Ln-Ln………………………………54
6-4-3雙層單跨具自復位梁柱接頭構架SC-Ln-Sn………………………………55
6-4-4雙層單跨具雙重自復位構架SD-Ll-Ls……………………………………55
6-4-5雙層單跨具雙重自復位構架SD-Ll-Ss……………………………………56
6-5能量消散分析……………………………………………………………………57
6-6隅撐與梁柱接頭受力關係………………………………………………………58
6-7有限元素分析與比較……………………………………………………………59
6-8結論………………………………………………………………………………60
第七章 結論與建議…………………………………………………………………61
7-1結論………………………………………………………………………………61
7-2建議………………………………………………………………………………62
參考文獻……………………………………………………………………………63

1.Krawinkler, H. (1978), “Shear in Beam-Column Joint in Seismic Design of steel Frame”, Engineering Journal, AISC, Vol.15, NO.3, pp.82-91.
2.Tsai, K.C. and Popov, E.P. (1990), “Seismic Panel Zone on Elastic Story Drift in Steel Moment Resistance Frames”, Journal of Structural Engineering-ASCE, Vol.116, No.12, pp. 3285-3301.
3.Taranath B.S. (1988), Structural Analysis & Design of Tall Building, Mc Graw-Hill, New York.
4.Bruneau, M., Uang C.-M. and Whittaker A. (1998), “Ductile Design of Steel Structures”, McGraw-Hill Company.
5.Civjan, S.A., Engelhardt, M.D. and Gross J.L. (2000), “Retrofit of Pre-Northridge Moment-Resisting Connections, Journal of Structural Engineering-ASCE, Vol.126, Iss.4, pp.445-452.
6.Kim, T., Whittaler, A.S., Gilani, A.S.J., Bertero, V.V. and Takhirov, S.M. (2002), “Cover-Plate and Flange-Plate Steel Moment-Resisting Connections”, Journal of Structural Engineering-ASCE, Vol.128, Iss.4, pp.474-482.
7.Yu, Q.S., Uang, C.M., and Gross, J (2000), “Seismic Rehabilitation Design of Steel Moment Connection with welded Haunch”, Journal of Structural Engineering-ASCE, Vol.126, Iss.1, pp. 69-78.
8.Plumier, A., Baus, R., Pepin, R., and Schliech, J. (1992), “Anti Seismic Steel Structure Work”. U.S. Patent, NO5148642.
9.Chen, S.J., Yeh, C.H. and Chu, J.M. (1996), “Ductile Steel Beam-to-Column Connections For Seismic Resistance”, Journal of Structural.
10.Lee, C.H., Jeon, S.W., Kim, J.H. and Uang, C.M. (2005), “Effects of Panel Zone Strength And Beam Web Connection Method On Seismic Performance Of Reduced Beam Section Steel Moment Connections”, Journal of Structural Engineering, AISC, Vol.131, Iss.12, pp.1854-1865.
11.Chou, C.C., and Tsai, K.C. (2002), “Plasticity-fibre model for steel triangular plate energy dissipating devices”, Earthquake Engineering & Structural Dynamics, Vol.31, Iss.9, pp. 1643-1655.
12. Uang, C.M.; Fan, C.C. (2001), “Cyclic stability Criteria for steel moment connections with reduced beam section”, Journal of Structural Engineering-ASCE, Vol.127, Iss.9, pp.1021-1027.
13.翁正強,“高層鋼骨建築偏心斜撐構架(EBF)耐震設計:行為與原理(上)”,結構工程,第十一卷,第二期,八十五年六月,pp.117-135。
14.翁正強,“高層鋼骨建築偏心斜撐構架(EBF)耐震設計:行為與原理(下)”,結構工程,第十一卷,第三期,八十五年六月,pp.131-141。
15.Remennikov, A.M. and Walpole, W.R. (1997), “Analytical prediction of seismic behavior for concentrically-braced steel systems”, Earthquake Engineering & Structural Dynamics, Vol.26, Iss.8, pp.859-874.
16.Cheng J. JR., Yam M.C.H. and Hu S.Z. (1994), “Elastic Buckling Strength of Gusset Plate Connections”, Journal of Structural Engineering, Vol.120, No.2, pp.538-539.
17.蔡宜青(2008),實尺寸兩層特殊同心斜撐鋼構架試驗與分析研究,國立台灣大學工學院土木工程學系,碩士論文。
18.林南交(2010),特殊同心斜撐構架之耐震性能,國立交通大學土木工程學系,博士論文。
19.Larry A., James M. Ricles and Richard Sause (2007), “Experimental Evaluation of a large-Scale Buckling-Restrained Braced Frame”, Journal of Structural Engineering-ASCE, Vol.133, Iss.9, pp.1205-1214.
20.Hsu, H.L., Jean, S.Y. (2003), “Improving Seismic Design Efficiency of Petrochemical Facilities, Practice Periodical on Structural Design and Construction, Vol. 8, No. 2, pp. 107-117.
21.彭志鴻(2009),應用不同尺度隅撐之鋼結構耐震性能研究,國立中央大學土木工程學系,碩士論文。
22.李宗儔(2010),具挫屈控制機制之隅撐構架耐震行為研究,國立中央大學土木工程學系,碩士論文。
23.Priestley, M.J.N. and Tao, J. R. (1993), “Seismic Response of Precast Prestressed Concrete frames with partially Debonded Tendons”, PCI Journal, Jan.-Feb., pp.58-66.
24.Ricles, J. M., Sause, R., Peng, S. W. and Lu, L. W. (2002), “Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections”, Journal of Structural Engineering, Vol.128, No.7, pp. 850-859.
25.Christopoulos, C., Filiatrault, A., Uang, C. M. and Folz, B. (2002), “Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames”, Journal of Structural Engineering, Vol.128, No.9, pp. 1111-1120.
26.Englekirk, R. E. (2002), “Design-Construction of The Paramount -A39-Story Prestressed Concrete Apartment Building”, PCI Journal, July-August, pp.56-71.
27.Rojas, P., Ricles, J. M. and Sause, R. (2005), “Seismic Performance of Post-Tensioned Steel Moment Resisting Frames With Friction Device”, Journal of Structural Engineering, Vol. 131, No. 4, pp. 529-540.
28.Kim, H. J. and Christopoulos, C. (2008), “Friction Damped Posttensioned Self-Centering Steel Moment-Resisting Frames”, Journal of Structural Engineering, Vol. 134, No. 11, pp. 1768-1779.
29.Wolski, M., Ricles, J. M. and Sause, R. (2009), “Experimental Study of a Self-Centering Beam-Column Connection with Bottom Flange Friction Device”, Journal of Structural Engineering, Vol. 135, No. 5, pp. 479-488.
30.曾士賓(2001),預力預鑄構架耐震能力之擬彈性法評估,國立台灣大學土木工程研究所,碩士論文。
31.莊勝智(2004),含預力構架耐震行為研究,國家實驗研究院國家地震工程研究中心報告,編號NCREE-04-024。
32.Chou, C. C., Chen, J. H., Chen, Y. C. and Tsai, K. C. (2006), “Evaluating Performance of Post-Tensioned steel Connections with Strands and Reduced Flange Plates”, Journal of Earthquake Engineering and Structural Dynamics, Vol. 35, Issue. 9, pp. 1167-1185.
33.黃崇豪(2005),預力鋼梁接CFT 柱接頭含消能鋼棒之行為,國立交通大學土木工程研究所,碩士論文。
34.鄭錦銅(2006),雙向預力含版R.C.梁柱接頭耐震性能研究(Ⅱ),國家地震工程研究中心,報告編號NCREE-06-023。
35.蔡峻豪(2012),配置開槽消能鋼板之預力式橋柱耐震性能研究,國立中央大學土木工程學系,碩士論文。
36.盧煉元(2007),結構消能摩擦材料之摩擦性能測試,結構工程期刊,第22卷,第4期,第73-95頁。
37.內政部營建署(2006),鋼構造建築物鋼結構設計技術規範。
38.American Institute of steel Construction. Inc. (2005). Seismic Provisions for Steel Buildings, AISC 341-05, Chicago, IL.
39.內政部營建署 (2011),建築物耐震設計規範及解說。
40.吳家慶(2005),削切蓋板鋼骨梁柱接頭之耐震行為研究,國家實驗研究院國家地震工程研究中心報告,編號 NCREE-05-017。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔