跳到主要內容

臺灣博碩士論文加值系統

(54.227.97.219) 您好!臺灣時間:2021/12/01 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:溫文華
研究生(外文):Wen-Hua Wen
論文名稱(外文):Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
指導教授:羅夢凡
指導教授(外文):Meng-Fan Luo
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:85
中文關鍵詞:白金奈米團簇
外文關鍵詞:atomic structureselectro-catalytic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
白金的奈米團簇利用蒸鍍的方法成長在氧化薄膜Al2O3/NiAl(100)上,利用高能電子繞射儀(Reflection High Energy Electron Diffraction)、掃描穿遂式顯微鏡(Scanning Tunneling Microscopy)和歐傑電子能譜儀(Auger Electron Spectroscopy)來研究之。我們發現白金奈米團簇(平均直徑2.25nm、高0.4nm)有很好的排列行為而且它們的結構和相位受到底層氧化物的影響。經由高能電子繞射儀的結構研究,我們發現白金團簇是fcc的結構並且沿著平行NiAl(100)表面的白金團簇的(100)面方向成長。其白金的[0-1-1]方向平行於NiAl(100)的[0-10]方向。這是個理想的成長方式,白金團簇(100)面和表面的氧化物矩形網狀結構互相吻合。白金團簇的晶格常數相對於fcc結構的白金塊材膨脹了約5%,這樣會使白金團簇的(100)面有比較好的晶格去吻合表面的氧化物。
另外白金奈米團簇的電催化性質如甲醇氧化性質(methanol oxidation)和其特性可以用循環伏安法(cyclic voltammetry)、高能電子繞射儀、掃描式電子顯微鏡(SEM)和歐傑電子能譜儀來研究。我們發現白金團簇在CV實驗後會聚成更大的團簇。結果顯示聚集的奈米團簇的直徑約15~30nm,其結構依然為fcc結構但其(111)面有個隨機的方向相對於表面的氧化物。
The Pt nanoclusters grown from vapour deposition on thin film Al2O3/NiAl(100)
have been studied by reflection high energy electron diffraction (RHEED), scanning
tunnelling microscopy (STM), and Auger electron spectroscopy (AES). The results
show that the Pt nanoclusters (with a mean diameter of 2.25 nm and height of 0.4 nm)
are highly crystalline and their structures and phases are significantly affected by the
oxide substrate. Structural analysis based on the RHEED patterns indicates that Pt
clusters, although with different sizes, have an fcc phase and grow with their (001)
facets parallel to the NiAl(100) surface, and with [110] axis along the [0-10] direction
of the bulk NiAl(100). It is an optimal growth as the Pt fcc (001) facets match better
with the rectangular oxygen mesh of the oxide surface. The lattice constant of the Pt
clusters is expanded by about 5 % (4.12 Å) relative to that of fcc bulk Pt (3.92Å), as
the Pt fcc (001) plane has better lattice match with the oxide surface.
The electro-catalytic properties of the Pt/Al2O3/NiAl(100) electrode for methanol
oxidation and its kinetic characterization were investigated by cyclic voltammetry
(CV), RHEED, AES and scanning electron microscopy (SEM). We observed
excellent electro-catalytic activity. The Pt nanoclusters have been sintered under the
CV conditions. The result exhibits that the aggregated size of Pt nanoclusters is ca.
15~30nm in diameter. The structures of the aggregated Pt nanoclusters have also an
fcc phase but have their (111) plane randomly oriented with respect to the oxide
surface.
Chapter 1 Introduction …………………………………………………1
Reference………………………………………………4
Chapter 2 Literature Survey……………………………………………5
2.1 Fuel Cell………………………………………………5
2.2 NiAl Crystal……………………………………………6
2.3 Aluminum Oxide………………………………………7
2.4 Characterization of Pt nanoclusters……………………9
Reference…………………………………………13
Chapter 3 Theoretical Background……………………………………14
3.1 UHV system …………………………………………14
3.2 Surface Science Techniques …………………………16
3.2.1 Auger electron spectrum (AES) ……………16
3.2.2 Low energy electron diffraction (LEED) …19
3.2.3 Reflection High Energy Electron Diffraction (RHEED)……………………23
3.2.4 Scanning Tunneling Microscopy (STM)…….27
3.2.5 Scanning Electron Microscope (SEM)………29
3.3 Principles and methods of electrochemistry …………31
3.3.1 Introduction of Electrochemistry …………31
3.3.2 Electrochemical Reaction System …………32
3.3.3 Cyclic Voltammetry (CV)…………………33
3.4 Preparation of Works …………………………………34
3.4.1 Sample Cleaning ……………………………34
3.4.2 Oxygen Exposure ……………………………37
3.4.3 Deposition Process …………………………39
3.4.4 CV process …………………………………39
Reference……………………………………………41
Chapter 4 Result and Discussion ………………………………………42
4.1 Pt nanoclusters deposition on Al2O3/NiAl(100) ………42
4.2 CV study on the Pt/Al2O3/NiAl(100) electrode ………52
4.3 The atomic structure of aggregated Pt
Nanoclusters after CV processes ……………66
Reference…………………………………………75
Chapter 5 Conclusion………………………………………………76
[2] R. E. Palmer, New Sci. 2070, 38 (1996).
[3] M. Bäumer and H. J. Freund, Prog. Surf. Sci. 61, 127 (1999).
[4] G. P. Lopinski, V. I. Merkulov and J. S. Lannin, Phys. Rev. Lett. 80, 4241 (1998).
[5] C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).
[6] J. Shi, S. Gider, K. Babcock and D. D. Awschalom, Science 271, 937 (1996).
[7] P. Gambardella, S. Rusponi, M. Veronese, S. S. Dhesi, C. Grazioli, A. Dallmeyer, I.
Cabria, R. Zeller, P. H. Dederichs, K. Kern, C. Carbone and H. Brune, Science 300,
1130 (2003).
[8] M. Haruta, Catal. Today 36, 153 (1997).
[9] M. Valden, X. Lai and D. W. Goodman, Science 281, 1647 (1998).
[10] T. Kizuka and N. Tanaka, Phys. Rev. B 56, R10079 (1997).
[11] K. H. Hansen, T. Worren, S. Stempel, E. Lægagaard, M. Bäumer, H.-J. Freund, F.
Besenbacher and I. Stensgaard, Phys. Rev. Lett. 83, 4120 (1999).
[12] O. Dulub, W. Hebenstreit and U. Diebold, Phys. Rev. Lett. 84, 3646 (2000).
[13] B. Pauwels, G. Van Tendeloo, E. Zhurkin, M. Hou, G. Verschoren, L. Theil Kuhn,
W. Bouwen and P. Lievens, Phys. Rev. B 63, 165406 (2001)
[14] Sh. K. Shaikhutdinov, R. Meyer, D. Lahav, M. Bäumer, H.-J. Freund, Phys. Rev.
Lett. 91, 076102 (2003).
[15] W. Vielstich, Fuel Cells, Wiley Interscience, Bristol, 1965.
[16] M.W. Breiter, Electrochemical Processes in Fuel Cells, Springer- Verlag, Berlin,
1969.
[17] O.A. Petrii, B.I. Podlovchenko, A.N. Frumkin, H. Lal, J. Electroanal. Chem. 10
(1965) 253.
[18] V.S. Bagotzki, Y. Vassileiv, Electrochim. Acta 12 (1967) 1323.
[19] M. Breiter, Electrochim. Acta 12 (1967) 1213.
[20] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998).
[21] M. Haruta, Catal. Today 36, 153 (1997).
[22] Masatake Haruta, Catalysis Today 36 (1997) 153-166
[23] P. Wynblatt, N. A. Gjostein, in Progess in Solid State Chemistry, J. O. McCaldin,
G. A. Somorjai, Eds. (Elsevier Science, Amsterdam, 1975), vol. 9, pp. 21– 58
[24] P. Wynblatt, N. A. Gjostein, Acta Metall. 24, 1165 (1976).
[25] C. T. Campbell, Surf. Sci. Rep. 27, 1 (1997).
[26] J. V. Zoval, J. Lee, S. Gorer, and R. M. Penner*, J. Phys. Chem. B 1998, 102,
1166-1175

[1] James Larminie , Andrew Dicks, Fuel Cell Systems Explained second edition.
[2] Ralf-Peter Blum *, Dirk Ahlbehrendt, Horst Niehus, Surface Science 366 (1996)
107-120
[3] Rene Franchy, Surface Science Reports 38 (2000) 195-294
[4] R.-P. Blum, H. Niehus, Appl. Phys. A 66, S529–S533 (1998)
[5] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319(1994)95-109
[6] R. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396 (1998) 176.
[7] M. Ba umer, H.J. Freund, Prog. Surf. ‥ Sci. 61 (1999) 127.
[8] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006)
1942-1951
[9] Jeff Greeley and Manos Mavrikakis, J. AM. CHEM. SOC., 124 (2002) 7193-7201
[10] Hamnett, A. Catal. Today 1997, 38, 445-457.
[11] Williams, K. R.; Burstein, T. Catal. Today 1997, 38, 401-410.
[12] Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R. Catal. Today
1997, 38, 425-437.
[13] Th. Bertrams, F. Winkelmann, Th. Uttich, H-J Freund, H. Neddermeyer, Surf.
Sci. 331-333(1995)1515-1519
[14] Charles T. Campbell, Stephen C. Parker, David E. Starr, SCIENCE VOL 298 25
OCTOBER 2002
[15] P. Wynblatt, N. A. Gjostein, Acta Metall. 24, 1165 (1976).
[16] C. T. Campbell, Surf. Sci. Rep. 227, 1 (1997).
[17] Debra R. Rolison, SCIENCE, 299 (2003)1698-1701
[18] J. V. Zoval, J. Lee, S. Gorer, and R. M. Penner, J. Phys. Chem. B 1998, 102,
1166-1175

[1] F. Jona, J.A. Strozier, Jr., W.S. Young: Rep. Prog. Phys. 45 , 527 (1982)
[2] N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders (1976).
[3] J.E. Mahan, K.M. Geib, G. Y. Robinson, and R. G. Long, J. Vac. Sci. Technol. A
8, 3692(1990).
[4] H.S. Nalwa editor, Experimental Methods in the Physics Sciences– Volume 38:
Advances in Surface Science, Academic Press (2001).
[5] Gary Attard, Colin Barnes, Surface.
[6] G. Lehmpfuhl, Y. Uchida, M.S. Zei, D.M. Kolb, in: J. Lipkowski, P.N. Ross
(Eds.), Imaging of Surfaces and Interfaces; Frontiers of Electrochemistry, vol. 5,
Wiley-VCH, Weinheim, Germany, 1999, p.57.

[1] Debra R. Rolison, SCIENCE, 299 (2003)1698-1701
[2] M. Klimenkov, S. Nepijko, H. Kuhlenbeck, M. Bäumer, R. Schlögl and H.-J.
Freund, Surf. Sci. 391, 27 (1997).
[2] A. L. N. Pinheiro, M. S. Zei, D. Ertl, Phys. Chem. Chem. Phys, 7 (2005)
1300-1309
[4] Th. Bertrams, F. Winkelmann, Th. Uttich, H-J Freund, H. Neddermeyer, Surf. Sci.
331-333(1995)1515-1519
[5] J. V. Zoval, J. Lee, S. Gorer, and R. M. Penner, J. Phys. Chem. B 1998, 102,
1166-1175
[6] P. Gassmann, R. Franchy and H. Ibach, Surf. Sci. 319, 95 (1994)
[7] N. Frémy, V. Maurice, and P. Marcus, J. Am. Ceram. Soc. 86, 669 (2003).
[8] V. Maurice, N. Frèmy and P. Marcus, Surf. Sci. 581, 88 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top