跳到主要內容

臺灣博碩士論文加值系統

(3.238.180.255) 您好!臺灣時間:2022/05/28 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘品憲
研究生(外文):Pin-Hsien Pan
論文名稱:利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
論文名稱(外文):Improvements of detection limitation of antigen concentration by antibody fragment probe on silicon nanowire field effect transistor
指導教授:陳文逸陳文逸引用關係
指導教授(外文):Wen-Yih Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:112
中文關鍵詞:矽奈米線場效電晶體抗體片段探針混和自組裝單層膜
外文關鍵詞:silicon nanowire field effect transistorantibody fragment probemixed self-assemble monolayers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iv
誌謝 vi
目錄 viii
圖目錄 xii
表目錄 xvi
第一章 緒論 1
第二章 文獻回顧 3
2.1疾病檢測-Immunoassay 3
2.1.1酵素結合免疫吸附分析法(ELISA) 5
2.1.2免標定免疫檢測(label-free immunoassay) 9
2.2 矽奈米線場效電晶體生物感測器 11
2.3抗體分子 17
2.3.1 抗體分子概論 17
2.3.2 抗體結構 19
2.3.3 抗原結合區段(Fab region) 20
2.3.4 可結晶區段(Fc region) 20
2.3.5 抗體探針種類 21
2.4 抗體片段(antibody fragment)的製程 25
2.4.1 酵素消化反應之抗體 25
2.4.2 重組(蛋白)抗體 26
2.5 晶片表面改質 28
2.5.1 自組裝單層膜表面改質技術 28
2.5.2 表面分子固定化 31
2.5.3 矽氧烷-聚乙二醇(Silane-PEG)於自組裝單層膜之應用 32
2.6 電訊號的增幅及抗體位向的導正 36
第三章 實驗藥品、儀器設備與方法 39
3.1 實驗藥品 39
3.1.1 FET晶片表面改質與檢測 39
3.1.2 ELISA 抗體親和力檢測 40
3.1.3 抗體片段化實驗 40
3.1.4 電泳 41
3.2 儀器設備 43
3.3 晶片表面改質 43
3.3.1 晶片表面清洗及氧電漿處理 43
3.3.2 修飾silane-PEG(-NH2 & -OH (1:10) mixing) 44
3.3.3 修飾GA(glutaraldehyde) 44
3.3.4 探針固定化 44
3.4 FET電性測量 46
3.5 ELISA 抗體親和力(affinity test)實驗 47
3.6 抗體片段化實驗 49
3.7 SDS-PAGE 蛋白質電泳 51
第四章 結果與討論 54
4.1 表面改質之分析 54
4.2 抗體片段探針與完整抗體探針的比較 60
4.2.1抗體親和力對檢測的影響 60
4.2.2對特定抗原進行檢測及比較 63
4.2.3 添加R18進行電性檢測及比較 66
4.3 酵素切割抗體的最佳化 70
4.3.1 SDS-PAGE結果探討 71
4.3.2 酵素切割抗體親和力檢測之結果探討 72
第五章 結論與未來展望 75
5.1 結論 75
5.2 未來展望 76
第六章 參考文獻 78
第七章 附錄 84
7.1 SPR測定抗體親和力實驗 84
7.1.1 SPR實驗器材、藥品、儀器以及操作程序 84
7.1.2 SPR實驗結果與現象探討 86
7.2 COB實驗 90
1. Vu, C.A., et al., Signal Enhancement of Silicon Nanowire Field-Effect Transistor Immunosensors by RNA Aptamer. ACS Omega, 2019. 4(12): p. 14765-14771.
2. Dmitri Ivnitski, I.A.-H., Plamen Atanasov, Ebtisam Wilkins, Biosensors for detection of pathogenic bacteria. Biosensors & Bioelectronics, 1999. 14: p. 599-624.
3. Forster, R.J., P. Bertoncello, and T.E. Keyes, Electrogenerated chemiluminescence. Annu Rev Anal Chem (Palo Alto Calif), 2009. 2: p. 359-85.
4. Lequin, R.M., Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem, 2005. 51(12): p. 2415-8.
5. Englebienne, P., A. Van Hoonacker, and M. Verhas, Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy, 2003. 17: p. 255-273.
6. Georgios Tsekenis, G.-Z.G., Frank Davis, Paul A. Millner, Tim D. Gibson, and Se´amus P. J. Higson, Label-less Immunosensor Assay for Myelin Basic Protein Based upon an ac Impedance Protocol. Analytical Chemistry, 2008. 80(6): p. 2058-2062.
7. 吳民耀、劉威志, 表面電漿子理論與模擬. 物理雙月刊, 2006. 28(2): p. 486-496.
8. 邱國斌、蔡定平, 金屬表面電漿簡介. 物理雙月刊, 2006. 28(2): p. 472-485.
9. Liu, B.D., Y.K. Su, and S.C. Chen, Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing. International Journal of Electronics, 1989. 67(1): p. 59-63.
10. Kojima, A., et al., Protein Sensor Using Carbon Nanotube Field Effect Transistor. Japanese Journal of Applied Physics, 2005. 44(4A): p. 1596-1598.
11. Chen, K.-I., B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano today, 2011. 6(2): p. 131-154.
12. Cui, Y., et al., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 2001. 293: p. 1289-1292.
13. Lu, N., et al., Label-free and rapid electrical detection of hTSH with CMOS-compatible silicon nanowire transistor arrays. ACS Appl Mater Interfaces, 2014. 6(22): p. 20378-84.
14. Gary W. Litman, J.P.R., Michael J. Shamblott, Robert N. Haire, Michele Hulst, William Roess, Ronda T. Litman, Kristin R. Hinds-Frey, Anna Zilch, and Chris T. Amemiyag, Phylogenetic Diversification of Immunoglobulin Genes and the Antibody Repertoire. Molecular Biology and Evolution, 1993. 10(1): p. 60-72.
15. Charles A Janeway, J., Paul Travers, Mark Walport, and Mark J Shlomchik., Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science, 2001.
16. Dan Inbar, J.H., and David Givol, Localization of Antibody-Combining Sites within the Variable Portions of Heavy and Light Chains. Proceedings of the National Academy of Sciences of the U.S.A., 1972. 69(9): p. 2659-2662.
17. Poljak RJ, A.L., Avey HP, Chen BL, Phizackerley RP, Saul F., Three-dimensional structure of the Fab' fragment of a human immunoglobulin at 2,8-A resolution. Proc. Nat. Acad. Sci. USA, 1973. 70(12): p. 3305-3310.
18. Morea, V., A.M. Lesk, and A. Tramontano, Antibody modeling: implications for engineering and design. Methods, 2000. 20(3): p. 267-79.
19. Richard O C., J.H., Linda Q. Judith R. G., David P., Stanley H., Near-Fatal Yew Berry Intoxication Treated With External Cardiac Pacing and DigoxinSpecific FAB Antibody Fragments Annals of Emergency Medicine 1990. 19(1): p. 38-43.
20. Bin Lu, J.X., Chunlin Lu, Changru Wu, and Yu Wei, Oriented Immobilization of Fab' Fragments on Silica surface. Analytical Chemistry, 1995. 67(1): p. 83-87.
21. Kim, J.P., et al., Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal Biochem, 2008. 381(2): p. 193-8.
22. Elnathan, R., et al., Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett, 2012. 12(10): p. 5245-54.
23. Kristien Bonroy, F.F., Gunter Reekmans , Ellen Dewolf ,Randy De Palma, Gustaaf Borghs, Paul Declerck, Bruno Goddeeris, Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. Journal of Immunological Methods, 2006. 312: p. 167-181.
24. Kumada, Y., et al., Efficient refolding and immobilization of PMMA-tag-fused single-chain Fv antibodies for sensitive immunological detection on a PMMA plate. J Immunol Methods, 2014. 411: p. 1-10.
25. Kumada, Y., et al., Efficient preparation and site-directed immobilization of VHH antibodies by genetic fusion of poly(methylmethacrylate)-binding peptide (PMMA-Tag). Biotechnol Prog, 2015. 31(6): p. 1563-70.
26. Plaut AG, T.T.J., Immunoglobulin M: pentameric Fcmu fragments released by trypsin at higher temperatures. Proc Natl Acad Sci U S A., 1970. 65(2): p. 318-322.
27. Maciej Adamczyk , J.C.G., Jiang Wu, Papain digestion of different mouse IgG subclasses as studied by electrospray mass spectrometry. Journal of Immunological Methods, 2000: p. 95-104.
28. M. MARIANI, M.C., L. TARDITI and E. SECCAMANI A NEW ENZYMATIC METHOD TO OBTAIN HIGH-YIELD F(ab)2, SUITABLE FOR CLINICAL USE FROM MOUSE IgGl Molecular Immunology, 1991. 28: p. 69-77.
29. Kinman, A.W.L. and R.R. Pompano, Optimization of Enzymatic Antibody Fragmentation for Yield, Efficiency, and Binding Affinity. Bioconjug Chem, 2019. 30(3): p. 800-807.
30. Ma, H. and R. O'Kennedy, Recombinant antibody fragment production. Methods, 2017. 116: p. 23-33.
31. Kind, M. and C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
32. Sagiv, J., Organized Monolayers by Adsorption, I. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces. Journal of the .4tnerican Chemical Society, 1980. 102(1).
33. GABRIELLA CAPECCHI, M.G.F., GIANMARIO MARTRA, SALVATORE COLUCCIA, MARIA FRANCESCA IOZZI and MAURIZIO Cossi Adsorption of CH3COOH on TiO2: IR and theoretical investigations. Res. Chem. Intermed, 2007. 33: p. 269-284.
34. Wang, G.M., W.C. Sandberg, and S.D. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819-4824.
35. Federica Rusmini, Z.Z., and Jan Feijen, Protein Immobilization Strategies for Protein Biochips. Biomacromolecules, 2007. 8: p. 1775-1789.
36. Chou, W.C., et al., Neutralized chimeric DNA probe for the improvement of GC-rich RNA detection specificity on the nanowire field-effect transistor. Sci Rep, 2019. 9(1): p. 11056.
37. Cheng, S., et al., Field Effect Transistor Biosensor Using Antigen Binding Fragment for Detecting Tumor Marker in Human Serum. Materials (Basel), 2014. 7(4): p. 2490-2500.
38. Cheng, S., et al., Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sensors and Actuators B: Chemical, 2015. 212: p. 329-334.
39. Kim, K., et al., Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens Bioelectron, 2016. 77: p. 695-701.
40. Gao, N., et al., General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett, 2015. 15(3): p. 2143-8.
41. Filipiak, M.S., et al., Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors. Sensors and Actuators B: Chemical, 2018. 255: p. 1507-1516.
42. Andoy, N.M., et al., Graphene‐Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum. Advanced Materials Technologies, 2018. 3(12).
43. Gutierrez-Sanz, O., et al., Direct, Label-Free, and Rapid Transistor-Based Immunodetection in Whole Serum. ACS Sens, 2017. 2(9): p. 1278-1286.
44. Hideshima, S., et al., Label-free detection of allergens in food via surfactant-induced signal amplification using a field effect transistor-based biosensor. Sensors and Actuators B: Chemical, 2018. 254: p. 1011-1016.
45. Yoshida, Y., et al., Rabbit antibody detection with RNA aptamers. Anal Biochem, 2008. 375(2): p. 217-22.
46. Gao, N., et al., Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc Natl Acad Sci U S A, 2016. 113(51): p. 14633-14638.
47. White, S.P., et al., Rapid, Selective, Label-Free Aptameric Capture and Detection of Ricin in Potable Liquids Using a Printed Floating Gate Transistor. ACS Sensors, 2016. 1(10): p. 1213-1216.
48. Tsai, W.-C. and I.-C. Li, SPR-based immunosensor for determining staphylococcal enterotoxin A. Sensors and Actuators B: Chemical, 2009. 136(1): p. 8-12.
49. Luna-Moreno, D., et al., Early Detection of the Fungal Banana Black Sigatoka Pathogen Pseudocercospora fijiensis by an SPR Immunosensor Method. Sensors (Basel), 2019. 19(3).
50. Ma, S., et al., Direct label-free protein detection in high ionic strength solution and human plasma using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor. Biosens Bioelectron, 2018. 117: p. 276-282.
51. Guo-Jun Zhang, G.Z., Jay Huiyi Chua, Ru-Ern Chee, Ee Hua Wong, Ajay Agarwal, Kavitha D. Buddharaju, Navab Singh, Zhiqiang Gao, and N. Balasubramanian, DNA Sensing by Silicon Nanowire: Charge Layer Distance Dependence. NANO LETTERS, 2008. 8(4): p. 1066-1070.
52. De Vico, L., et al., Quantifying signal changes in nano-wire based biosensors. Nanoscale, 2011. 3(2): p. 706-17.
53. Kemeng Wang, G.W.a.D.L., CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Experimental Hematology & Oncology, 2012. 1(1).
54. Fumiaki N. Ishikawa, H.-K.C., Marco Curreli, Hsiang-I Liao, C. Anders Olson, Po-Chiang Chen, Rui Zhang, Richard W. Roberts, Ren Sun, Richard J. Cote, Mark E. Thompson, and Chongwu Zhou, Label-Free, Electrical Detection of the SARS Virus N-Protein with Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. ACS Nano, 2009. 3(5): p. 1219-1224.
55. Fumiaki N. Ishikawa, M.C., Hsiao-Kang Chang, Po-Chiang Chen, Rui Zhang, Richard J. Cote, Mark E. Thompson, and Chongwu Zhou, A Calibration Method for Nanowire Biosensors to Suppress Device-to-Device Variation. ACS Nano, 2009. 3(12): p. 3969-3976.
56. De Vico, L., et al., Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors. Nanoscale, 2011. 3(9): p. 3635-40.
57. Fenton, D.W.P.a.B.H., pH stability and activity curves of pepsin with special reference to their clinical importance. BMJ Journals, 1965. 6: p. 506-508.
58. Johnston, N., et al., Activity/stability of human pepsin: implications for reflux attributed laryngeal disease. Laryngoscope, 2007. 117(6): p. 1036-9.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定
2. 利用核適體作為訊號放大器於矽奈米線場效電晶體免疫感測器對生物標記物進行定量分析
3. 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
4. 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量
5. 利用恆溫吸附以及恆溫滴定卡計探討二氧化矽表面吸附DNA之吸附機制
6. 改良二氧化矽纖維膜分離程序於培養的細胞中微核醣核酸之純化
7. 應用磷酸根甲基化去氧核醣核酸引子以提升檢測單一核酸變異和微核醣核酸專一性之研究
8. 使用大規模特徵與機器學習來改善預測線性B細胞的抗原決定位之特定類別抗體
9. 甲基磷酸三酯鍵中性核酸引子/探針的設計應用於微核醣核酸原位雜交及改善PCR /qPCR單一核酸多態性檢測
10. 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
11. 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性
12. 豬環狀病毒第二型抗原檢測用之三明治酵素連結免疫吸附試劑之開發
13. 以雙馬來醯亞胺和5,5-雙甲基巴比妥酸共聚合用於鋰離子電池之高性能、高安全性富鎳陰極材料介面改質添加劑研究
14. 以混合醇製備聚碳酸酯二醇之研究
15. 磁控濺射法製備氧氮化釩薄膜的製備和表徵