(3.235.137.159) 您好!臺灣時間:2020/09/29 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:王司沁
研究生(外文):Ssu-Chin Wang
論文名稱:認知風格對學習者於互動多媒體輔助統計學習之影響-以圖像型與文字型為例
論文名稱(外文):The Effects of Students’ Cognitive Styles upon Applying Computer Multimedia to Change Statistical Misconceptions
指導教授:劉子鍵劉子鍵引用關係
指導教授(外文):Tzu-Chien Liu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:學習與教學研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:88
中文關鍵詞:圖像型與文字型動態連結多重表徵放聲思考統計概念改變
外文關鍵詞:Verbaliser-ImagerMultiple-RepresentationDynamic-LinkedStatisticsThink AloudConceptual Change
相關次數:
  • 被引用被引用:9
  • 點閱點閱:465
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
過去針對學習者於電腦學習情境下之個別差異探討的研究,大多數為關心學習成效的改善情形,而鮮少探究學習者於使用系統時的學習歷程、思考模式與操作行為等面向上的差異。據此,本研究之目的為:(1)探討不同認知風格的學習者使用互動多媒體系統的學習歷程;並欲進一步瞭解不同的學習歷程,是否會造成學習成效的不同,因此,另一目的為(2)探討不同認知風格的學習者於使用互動多媒體系統後的學習成效。
根據上述研究目的,本研究選取大學生進行大規模(共855名)認知風格量表(Style of Processing Scale, SOP)的施測,並根據量表結果選取符合條件之圖像型與文字型各14名接受實驗處理。透過二階段迷思概念診斷測驗進行前測、後測與延後測結果和放聲思考取得學習歷程資料,在實驗結束後立即進行半結構式的訪談,以完整地蒐集學習者操作過程中已描述但較不完整的想法,最後,再根據蒐集到的資料進行分析與整理。
本研究結果發現:(1)兩組在學習歷程「閱讀與處理訊息」、「思考」與「操作與觀察圖形」的方式等三方面有差異;(2)在閱讀與處理訊息的方式方面,文字型在回饋區獲得的協助多於圖像型;(3)在思考方式上,大部分圖像型傾向將文字轉換成圖像作思考;(4)在操作與觀察圖形上,圖像型傾向自我導向式的操作,文字型則是一步一步地遵循教學引導進行操作;(5)學習成效上,兩組僅在延後測的迷思概念達顯著差異,而在前、後測的迷思概念,與三個測驗階段的概念理解兩組皆無顯著差異。
綜合歸納,不同認知風格的學習者顯現出不同的學習歷程,而在學習成效方面卻無太大的差異。結果顯示不同認知風格學習者皆有其特殊的學習方式,而且,此不同的學習方式對不同認知風格學習者而言,皆能夠有效地提升其學習成效。
Computer multimedia is seen as a good tool to help students, by integrating the diagram and text representations, to change their statistical misconceptions. However, students’ cognitive style may influence their statistical learning with computer multimedia. Therefore, the current study focused on students’ differences in learning processes created by different cognitive styles (verbalizer and imager), and compared the effects made on their statistical misconceptions through the aid of the computer multimedia. According to results from the large scale of Style of Processing Scale, twenty eight undergraduates with different cognitive styles (imagers and verbalizers) were selected as the participants in this study. The diagnostic test and its equivalent forms were applied in the pretest, the post-test and the delayed post-test to investigate the variation in participants’ misconceptions. The learning process data were collected by think-aloud method and a semi-structure interview was conducted after the experiment. The results displayed that students with different cognitive styles indeed have differences in their learning processes while learning with computer multimedia. Besides, both imagers and verbalizers can effectively reduce their statistical misconceptions and promote their correct concept understanding by learning with computer multimedia.
目 錄
第一章 緒論 1
第一節 研究背景與動機 1
第三節 研究問題 3
第四節 名詞釋義 3
第二章 文獻探討 5
第一節 多重表徵之學習理論 5
第二節 認知風格理論 10
第三節 概念改變理論 17
第三章 研究方法與設計 21
第一節 研究設計 21
第二節 實驗設計與步驟 23
第三節 研究工具 27
第四節 資料整理與分析 31
第四章 結果與討論 35
第一節 圖像型與文字型之學習歷程分析 35
第二節 圖像型與文字型之學習成效分析 61
第三節 學習歷程與學習成效的結果與討論 69
第五章 結論與建議 72
第一節 結論 72
第二節 研究限制 74
第三節 未來研究建議 75
參考文獻 77
參考文獻
劉子鍵和林怡均(2006年10月)。以二階段迷思概念診斷測驗探究高中生之「相關」迷思概念。劉佩雲(主持人),與學習有關之情感與態度。台灣心理學會第45屆年會,台北市東吳大學。
鄭惟厚(2007)。你不能不懂的統計常識。台北市:天下文化。
蕭錦玲(2005)。以模擬為基礎的統計學習軟體之初探性評估研究。中央大學學習與教學研究所碩士論文,未出版,桃園縣。
Ainsworth, S. (1999). The functions of multiple representations. Computers and Education, 33, 131-152.
Ainsworth, S., & Van Labeke, N. (2004). Multiple forms of dynamic representation. Learning and Instruction, 14(3), 241-255.
Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students'' understanding of chemical change. Journal of Research in Science Teaching, 41(4), 317-337.
Biemans, H. J. A., Deel, O. R., & Simons, P. R. J. (2001). Differences between successful and less successful students while working with the CONTACT-2 strategy. Learning and Instruction, 11(4-5), 265-282.
Clark, R. C., & Mayer, R. E. (2003). E-learning and the science of instruction.
San Francisco: Jossey-Bass.
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293-332.
Childers, T. L., Houston, M. J., & Heckler, S. E. (1985). Measurement of individual differences in visual versus verbal information processing. The Journal of Consumer Research, 12(2), 125-134.
Cumming, G., Thomason, N., & Zangari, M. (1995). Designing software for cognitive change: StatPlay and understanding statistics. World Conference on Computers in Education (WCCE) IV, Liberating the learner, 753-765.
Curry, L. (1983, April). An organization of learning styles theory and constructs. Paper presented at the American Educational Research Association Annual Conference, Montreal, Canada.
Darley, W. K. (1999). The relationship of antecedents of search and self-esteem to adolescent search effort and perceived product knowledge. Psychology and Marketing, 16(5), 409-427.
Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.
Effken, J. A., & Doyle, M. (2001). Interface design and cognitive style in learning an instructional computer simulation. Comput Nurs, 19(4), 164-171.
Heckler, S. E., Childers, T. L., & Houston, M. J. (1993). On the construct validity of the SOP scale. Journal of Mental Imagery, 17(3), 119-132.
Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult questions. Learning and Instruction, 14(3), 343-351.
Jonassen, D. & Grabowski, B. (1993). Handbook of individual differences, learning and instruction. Hillsdale, NJ: Laurence Erlbaum Associates,.
Kang, S., Scharmann, L. C., Noh, T., & Koh, H. (2005). The influence of students’ cognitive and motivational variables in respect of cognitive conflict and conceptual change. International Journal of Science Education, 27(9), 1037-1058.
Kaput, J. J. (1987). Representation systems and mathematics. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 19–26). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Keil, F. (1999). Conceptual change In R. A. Wilson & F. C. Keil (1999). The MIT Encyclopedia of the Cognitive Sciences. pp. 179-182. Cambridge, MA: The MIT Press.
Kirby, J.R., Moore. P.J., and Schofield, N.J. (1988). Verbal and visual learning styles. Contemporary Educational Psychology, 13, 169-184.
Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949-968.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (Sometimes) worth ten thousand words. Cognitive Science, 11(1), 65-100.
Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13(2), 177-189.
Leutner, D., & Plass, J. L. (1998). Measuring learning styles with questionnaires versus direct observation of preferential choice behavior in authentic learning situations: the visualizer/verbalizer behavior observation scale (VV-BOS). Computers in Human Behavior, 14(4), 543-557.
Liu & Kinshuk. (in preparing). Development and evaluation of the Simulation Assisted Learning Statistics (SALS) environment to detect and change students’ statistical misconceptions.
Liu, T. C., & Lin, Y. C. (2005, June). Applying the concept mapping method to explore high school students’ understanding and misconceptions about the “correlation”Paper presented at the meeting of 2005 International Conference on Learning, Teaching and Assessment, Taiwan, Taipei.
Liu, T. C., Chen, Y. C., Hsiao, C. L., & Lin, Y. C. (2006, June). Exploring the effects of simulation based learning on college students’ statistical understanding, misconception, and attitude. In Proceedings of the 10th Annual Global Conference on Computers in Education, GCCCE2006(CD), Beijing, China. (In Chinese)
Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 1-19.
Mayer, R. E. (2001). Multimedia Learning. London: Cambridge University Press.
Mayer, R.E., and Moreno, R. (1998). A split attention effect in multimedia learning: Evidence for dual processing system in working memory. Journal of Educational Psychology, 90(2), 312-320.
Morris, E. J., & Scanlon, E. (2000). Active learning of statistics: A case study. Journal of the Association of Learning Technology Journal, 8(1), 80–91.
Morris, E. (2001). The design and evaluation of link: A computer-based learning system for correlation. British Journal of Educational Technology, 32(1), 39-52.
Morris, E. J., Joiner, R., & Scanlon, E. (2002). The contribution of computer-based activities to understanding statistics. Journal of Computer Assisted Learning, 18(2), 116-126.
Moore, D. S. (1997). New pedagogy and new content: The case of statistics. International Statistical Review/Revue Internationale de Statistique, 65(2), 123-137.
Novak E. (1988). Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics, Vol. 1349, Springer-Verlag, New York: Berlin.
Paivio, A. (1971). Imagery and verbal processes, New York: Holt, Rinehart and Winston..
Paivio, A. (1986). Mental representations: A dual coding approach, USA: Oxford University Press.
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian journal of psychology, 45(3), 255-287.
Paivio, A., & Harshman, R. (1983). Factor analysis of a questionnaire on imagery and verbal habits and skills. Canadian journal of psychology, 37(4), 461-483.
Ploetzner, R., & Lowe, R. (2004). Dynamic visualisations and learning. Learning and Instruction, 14(3), 235-240.
Posner, G. J., Strike, K. A., Hewson, P. W., and Gertzog, W. A. (1982). Accommodation of a Scientific Conception: Toward a Theory of Conceptual Change. Science Education, 66(2), 211-227.
Riding, R. J. (2001). The nature and effects of cognitive style. In R. J. Sternberg & L. Zhang (Eds.), Perspectives on thinking, learning, and cognitive styles (pp. 47–72). Mahwah, NJ: Erlbaum.
Riding, R.J., & Cheema, I. (1991). Cognitive styles - An overview and integration. Educational Psychology, 11, 193-215.
Riding, R. J., Grimley, M., Dahraei, H., & Banner, G. (2003). Cognitive style, working memory and learning behaviour and attainment in school subjects. British Journal of Educational Psychology, 73(2), 149-169.
Riding, R., & Rayner, S. (1998). Cognitive styles and learning strategies: Understanding style differences in learning and behaviour, London: David Fulton Publishers.
Riding, R. J., & Sadler-Smith, E. (1997). Cognitive style and learning strategies: Some implications for training design. International Journal of Training and Development, 1(3), 199-208.
Sadler-Smith, E., & J Smith, P. (2004). Strategies for accommodating individuals'' styles and preferences in flexible learning programmes. British Journal of Educational Technology, 35(4), 395-412.
Salomon, G. (1979). Interaction of media, cognition and learning. San Francisco: Jossey-Bass.
Scaifeand, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? Int. J. Human–Computer Studies, 45, 185-213.
Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141-156.
Schoenfeld, A. H., Smith, J. P., & Arcavi, A. (1993). Learning: The microgenetic analysis of one student’s evolving understanding of a complex subject matter domain. Advances in instructional psychology, 4, 55–175.
Schuyten, G., & Dekeyser, H. M. (2007). Preference for textual information and acting on support devices in multiple representations in a computer based learning environment for statistics. Computers in Human Behavior, 23(5), 2285-2301.
Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227-237.
Seufert, T., & Brunken, R. (2006). Cognitive load and the format of instructional aids for coherence formation. Applied Cognitive Psychology, 20, 321–331.
Snell, J. L. (1995). The Journal of Statistics Education Information Service and Other Internet Resources for Statistics Teachers. The American Statistician, 49(4), 372-375.
Someren, M. W. V., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud method: A practical guide to modelling cognitive processes. London: Academic Press.
Sternberg, R. J., & Grigorenko, E. L. (2001). A capsule history of theory and research on styles. In R. J. Sternberg & Li-fang Zhang (Eds.), Perspectives on Thinking, Learning, and Cognitive Styles (pp. 1-22). London, NJ: Erlbaum.
Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp. 211–231). Orlando FL: Academic Press.
Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. Duschl & R. Hamilton (Eds.), Philosophy of science, cognitive science and educational theory and practice. Albany, NY: SUNY Press.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285.
Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997). CaMeRa: A computational model of multiple representations. Cognitive Science, 21(3), 305-350.
van der Meij, J., & de Jong, T. (2006). Supporting students'' learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16(3), 199-212.
von Roten, F. C. (2006). Do we need a public understanding of statistics? Public Understanding of Science, 15(2), 243-249.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45-69.
Yerushalmy, M. (1991). Student perceptions of aspects of algebraic function using multiple representation software. Journal of Computer Assisted Learning, 7(1), 42-57.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 圖像及文字型認知風格學習者在學習不同型態多媒體教材時之學習情緒及成效研究
2. 多媒體輔助導向教學及傳統教學對不同認知風格學生學習成效之分析--以三年級「時間」課程單元為例
3. 國小高年級學生認知風格、自我調整學習策略與學業成就關係之研究
4. 前注意感知在資訊介面設計與認知風格上對資訊搜尋成效之研究
5. 科學圖畫書對不同認知風格學生科學概念學習之研究
6. 圖/文認知風格與圖/文搜尋情境之適配性對自我效能、線上搜尋行為及表現之影響
7. 電子白板互動式教學對不同認知風格國小學童英語學習結果之影響
8. 不同認知風格國中生的英語閱讀理解能力與閱讀理解策略之相關研究
9. 國小六年級學童各層次閱讀理解表現的性別差異與場地獨立性認知風格差異之研究
10. 兒童認知風格取向之多媒體數位學習內容設計
11. 網路化學習的多媒體呈現方式與認知風格對學習者影響之研究
12. 網路輔助教學對不同認知風格的國小學童在英語學習動機與成就之影響
13. Exploring Computer-based Nature Science Instruction Based on the Cognitive Load Theory: Spatial Contiguity Effect, and Effects of Prior Knowledge on Performance Assessments
14. 不同認知風格國中學生使用動畫及圖片融入網路學習「遺傳」單元之成效
15. 多媒體導向教學及戶外實體教學對不同認知風格學生學習成效之分析
 
系統版面圖檔 系統版面圖檔