跳到主要內容

臺灣博碩士論文加值系統

(3.233.242.204) 您好!臺灣時間:2021/09/26 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王梓樺
研究生(外文):Tzu-hua Wang
論文名稱:中孔洞矽化合物及碳材之合成、鑑定 及其在染料吸附暨鋰離子電池負極應用
論文名稱(外文):Synthesis and Characterizations of Ordered Mesoporous Silica and Carbon Materials and Their Applications as Adsorbents for Dye Adsorption and Anode Materials for Lithium Ion Batteries
指導教授:高憲明
指導教授(外文):Hsien-ming Kao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:173
中文關鍵詞:中孔洞矽材中孔洞碳材染料吸附鋰離子電池碳負極硬碳
外文關鍵詞:mesoporous silicamesoporous carbondye adsorptionlithium ion batterycarbon anodehard carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用非離子型介面活性劑Brij-76與TEOS (Tetraethyl orthosilicate) 、CES (Carboxyethylsilanetriol sodium salt) 做為共同矽源,一步合成出具有羧酸官能基的規則p6mm對稱中孔洞矽材簡稱為BCT-x系列,並且探討羧酸其官能基在不同pH值環境下對於一維鏈狀結構的小分子亞甲基藍吸附能力的影響。以及利用奈米模鑄法合成 p6mm 及 Ia d 對稱性的規則中孔洞碳材,比較合成出的碳材其孔洞結構性質差異及產生的影響,藉此探討不同結構的規則中孔碳材作為負極材料時,其結構的差異性對於電池的充放電次數,導電度,可容納的鋰離子數目,電容量的差異等等,並且作為吸附劑時,染料分子在其中的吸附情形.以及其p6mm 及 Ia d 對稱的孔道結構對於一維鏈狀結構的小分子亞甲基藍吸附能力的影響.
在鋰離子電池的負極應用中,則探討p6mm 及 Ia d 對稱性的規則中孔洞碳材在不同比例下 (碳材:導電碳黑:PVDF=8:1:1、7:2:1) 的電性表現,以及孔洞結構對於電容量的影響,結果發現在表面積、碳材層間距、雜質、導電度都相同的情況下,Ia d孔洞碳材表現出相當出色的電容量,並且在多次充放電之後維持著相當傑出的表現,尤其在活物:碳黑:PVDF比例7:2:1的樣品表現,在60次充放電之後仍舊維持在550mAh/g的水準,幾乎為石墨理論電容量的兩倍.
對於吸附小分子結構的亞甲基藍,發現碳材不管是p6mm 還是 Ia d孔道結構,大致上隨著其材料的表面積愈大,吸附量就愈大,且由 Langmuir 及 Freundlich 等溫吸附模型的分析,屬於Langmuir單層吸附。另外,藉由 pseudo-first-order 及 pseudo-second-order 動力學模型的分析,發現碳材對其吸附模式較適合用 pseudo-second-order 動力學模型來描述。
  在中孔洞矽材BCT-x系列則發現在較高pH值下時,含羧酸官能基的樣品染料吸附比較符合 Langmuir 所假設的單層吸附模式,當pH值較低時吸附量只和表面積相關,所以證明孔洞表面積在不含羧酸官能基時為影響其吸附此小分子染料的主要因素。並且在pH =9時,含羧酸官能基30%的BCT-30%樣品其單位表面積的吸附量為不含羧酸官能基樣品BCT-0%的兩倍。並且不論在任何pH值下其吸附模式皆適用 pseudo-second-order 的動力學模型來進行描述。

Periodic mesoporous organosilicas (PMOs) have attracted great scientific interest since 1990s due to their applications in various fields. The thesis is mainly focused on two types of mesoporous materials. The first type is carboxylic acid functionalized mesoporous silicas with hexagonal structures (p6mm symmatry) and they were synthesized by using simple one-pot synthesis route. The other type is ordered mesoporous carbon (OMC) materials with cubic structures (Ia d symmatry). The mesoporous carbon materials were synthesized by nanocasting method. Both the mesoporous materials were used as adsorbents for the adsorption of dye. The main purpose of this work is to compare the dye adsorption ability when different amounts of carboxylic groups are incorporated into mesoporous silicas, and to investigate whether the electrostatic attraction dominates the adsorption process or not in the solution with different pH values. Moreover, the dynamics model and thermodynamics model during adsorption were analyzed.
Rechargeable lithium-ion battery (LIB) is one of the most promising batteries which is currently used in many portable electronic devices and electric vehicles due to its high energy density, long cycle life, and low toxicity. In recent years, there are some applications of mesoporous carbons as anode materials for lithium ion batteries because of their high specific capacity. In the present work, ordered mesoporous carbons CMK-3 and CMK-8 were characterized for their use as anode materials in lithium ion batteries. A comparative study of their performances was carried out to evaluate the role of their morphologies and structures in electrochemical behavior. The first cycle discharge capacity of 964 and 1983 mAh g-1 were obtained for CMK-3 and CMK-8, respectively. The synthesized materials have great prospect to be used in commercial batteries.

中文摘要 II
Abstract V
謝誌 VII
目錄 VIII
圖目錄 XIV
表目錄 XIX
第一章 緒論 1
1-1 具官能基之中孔洞矽材合成發展與文獻回顧 1
1-1-1 中孔洞的定義 1
1-1-2 中孔洞分子篩MCM系列簡介 1
1-1-3 孔洞分子篩 SBA 系列簡介 3
1-1-4 界面活性劑性質簡介 7
1-1-5 中孔洞分子篩表面修飾 12
1-1-7 文獻回顧 13
1-2 中孔洞碳材合成發展文獻回顧 17
1-2-1 奈米模鑄法 (Nanocasting) 合成概念及機制 19
1-2-2 奈米模鑄法合成規則有序中孔洞碳材發展簡介 20
1-2-3 界面活性劑模造法 (Surfactant templating) 合成規則 28
1-2-4 研究動機與目的 32
第二章 實驗部分 33
2-1 藥品 33
2-2合成中孔洞矽材 Brij-76-CES-TEOS實驗步驟 35
2-3 中孔洞碳材合成方法總覽及命名 36
2-4 奈米模鑄法合成二維孔道結構 (p6mm) 的中孔洞碳材 37
2-4-1 中孔洞矽材 SBA-15 合成 37
2-4-2 中孔洞碳材 CMK-3合成 37
2-5 奈米模鑄法合成三維孔道結構 (Ia3d)中孔洞碳材 38
2-5-1 Ia3d對稱 中孔洞矽材模板 KIT-6 合成 38
2-5-2 Ia3d對稱 中孔洞碳材 CMK-8 合成 39
2-6 鋰離子電池負極製作 40
2-7 半電池充放電測試 40
2-8 染料吸附實驗 40
2-8-1 檢量線 40
2-8-2不同濃度、反應時間等溫吸附 41
2-8-3 中孔洞材料重複使用 41
2-9 實驗鑑定儀器 42
2-10 鑑定儀器之原理 43
2-10-1 同步輻射光束線 43
2-10-2 X 射線粉末繞射 (Powder X-Ray Diffractometer) 45
2-10-3 氮氣等溫吸脫附曲線、表面積與孔洞特性鑑定 46
2-10-4 熱重分析儀 (Thermogravimetric Analyzer, TGA)85 50
2-10-5 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM)90 52
2-10-6 掃描式電子顯微鏡 (Scanning Electron Microscope, 54
2-10-7 紫外光/可見光光譜儀 (UV-Vis Spectrometer) 56
2-10-8固態核磁共振儀 (Solid State Nuclear Magnetic Resonance, Solid State NMR) 57
2-10-9傅立葉紅外線吸收光譜儀 (Fourier Transform Infrared Spectrometer;FTIR) 66
第三章 結果與討論 68
第壹部分 Brij-76-CES-TEOS中孔矽材合成鑑定與應用 68
3-1 一步合成法合成具羧酸官能基中孔洞矽材BCT-x 68
3-1-1 XRD 結果分析 68
3-1-2 氮氣等溫吸附/脫附結果分析 71
3-1-3 FT-IR紅外線光譜分析 74
3-1-4 13C CP/MAS NMR分析 76
3-1-5 29Si MAS NMR分析 78
3-1-6 熱重分析 81
3-1-7 HR-TEM 結果分析 83
3-1-8 SEM 結果分析 86
3-2 亞甲基藍 (Methylene blue, MB) 吸附實驗 88
3-2-1 校正檢量線製作結果 88
3-2-2 BCT-x在不同pH環境及不同起始濃度下吸附結果 90
3-2-3 在不同pH環境及不同反應時間下吸附結果 99
3-2-4 含羧酸官能基中孔洞矽材BCT-30重複使用 103
第貳部分 p6mm 及Ia3d中孔洞碳材合成鑑定與吸附應用 104
3-3 奈米模鑄法合成p6mm以及 Ia3d中孔洞碳材 104
3-3-1 XRD 結果分析 104
3-3-2 氮氣等溫吸附/脫附結果分析 106
3-3-3 熱重分析 109
3-3-4 HR-TEM 結果分析 110
3-3-5 SEM 結果分析 112
3-4 亞甲基藍 (Methylene blue, MB) 吸附實驗 113
3-4-1 不同起始濃度下吸附結果 113
3-4-2 不同反應時間下吸附結果 116
3-4-3 中孔洞碳材重複使用 118
第叁部分 p6mm 及Ia3d碳材應用於鋰離子電池負極材料 119
3-5 CMK-3、CMK-8負極材料硬幣型半電池電性測試 119
3-5-1 XRD 結果分析 119
3-5-2 氮氣等溫吸附/脫附結果分析 121
3-5-3 熱重分析 124
3-5-4 拉曼光譜分析 125
3-5-5 循環伏安法分析 126
3-5-6 HR-TEM 結果分析 127
3-5-7 不同電流密度充放電 129
3-5-8 固定電流下循環壽命 133
第四章 結論 139
參考文獻 141

1. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 57-638.
2. Vaughan, D. E. W. Catal. Today, 1998, 2, 187.
3. Dailey, J. S.; Pinnavaia, T. J. Chem. Mater. 1992, 4, 855-894.
4. Yanagaisawa, T.; Kuroda, K.; Bull, C. K. Chem. Soc. Japan. 1988, 61, 3743.
5. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuil, J. C.; Beck, J. S. Nature 1992, 359, 710-712.
6. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonwicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; Higgins, S. B.; Schlenker, J. L. J. Am. Chem. Soc. 2002, 114, 10833-10845.
7. Sayari, A. Chem. Mater. 1996, 8, 1840-1852.
8. Neumann, R.; Khenkin, K. Chem. Commun. 1996, 2643-2644.
9. Charkaborty, B.; Pulikottil, A. C.; Viswanathan, B. Catal. Lett. 1996, 39, 63.
10. Harthmann, M.; Popll, A.; Kenvan, L. J. Phys. Chem. 1996, 100, 9906-9910.
11. Corma, A.; Navaro, M. T.; Pariente, J. P.; Sanchez, F. Stud. Surf. Sci. Catal. 1994, 84, 69.
12. Reddy, J. S.; Sayari, A. Chem. Commun. 1995, 2231-2232.
13. Wu, C.-G.; Bein, T. Science 1994, 264, 1757-1759.
14. Wu, C.-G.; Bein, T. Science 1994, 266, 1013-1015.
15. Wu, C.-G.; Bein, T. Chem. Mater. 1994, 6, 1109-1112.
16. (a) Lee, Y.S.; Surjadi, D.; Rathman, J. F. Langmuir 1996, 12, 6202-6210. (b) Ko, C. H.; Ryoo, R. J. Chem. Soc. Chem. Chem. 1996, 2467.
17. Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y. C. Sadler, P. J. Chem. Commun. 1995, 1803-1804.
18. Abe, T.; Tachibana, Y.; Uemtsu, T.; Iwamoto, M. Chem. Commun. 1995, 1617-1618.
19. Busio, K.; Janchen, J.; van Hooff, J. H. C. Microporous Mater. 1995, 5, 211-218.
20. Luan, Z. Zhou, W.; Cheng, C.- F.; Klinowski, J. Faraday Trans.1996, 91, 5161.
21. Kosslick, H.; Lischke, G.; Walther, G.; Storek, W.; Martin, A.; Fricke, R. Microporous Mater. 1997, 9, 133-139.
22. Weglarski, J.; Datka, J.; He, H.; Kilnowski, J. Faraday Trans. 1996, 92, 5161.
23. Mokaya, R.; Jones, W. Chem. Commun. 1996, 983-984.
24. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994, 368, 317-321.
25. Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491.
26. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shim, H. J.; Ryoo, R. Nature 2000, 408, 449-453.
27. Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4, Wiley-Interscience publications: New York, 2000.
28. (a) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;Chmelka, B. F.; Stucky, G.D. Science. 1998, 279, 548-552.
(b) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am.Chem. Soc. 1998, 120, 6024-6036.
29. Pluronic poly (alkene oxide) triblock copolymers are trademarked products of BASF, Mt. Olive, NJ.
30. (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994, 368, 317-321.
(b) Chen, C.; Li, H.; Davis, M. E. Microporous Mater. 1993, 2, 17.
(c) Attard, G. S.; Glyde, J. C. Nature. 1995, 378, 366-368.
(d) Göltner, C. G.; Antonietti, M. Adv. Mater. 1997, 9, 431-436.
31. (a) Tanev, P. T.; Pinnavaia, T. J. Science. 1995, 267, 865-867.(b) Bagshaw, S. A.; Prouzet, E.; Pinnavaia. T. J. Science. 1995, 269, 1242-1244.
32. (a) Prouzet, E.; Pinnavaia. T. J. Angew. Chem. Int. Ed.; 1997, 36,516-518.
(b) Antonietti, M.; Göltner, C. G. Angew. Chem. Int. Ed.;1997, 36, 910-928.
(c) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky,G. D.; Chmelka, B. F. J. Am. Chem. Soc. 1997, 119, 3596-3610.
33. (a) Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc.2000, 122, 11925-11933.
(b) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater.; 2000, 12, 1961-1968.
(c) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M.J. Phys. Chem. B. 2000, 104, 11465-11471.
(d) Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B. 2001, 105, 6817-6823.
34. Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki,O.; Park, S.-E.; Stucky, G. D. J. Phys. Chem. B. 2002, 106, 2552-2558.
35. http://www.ch.ntu.edu.tw/~cymou/micell.htm
36. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc.Faraday Trans. 1976, 72, 1525-1568.
37. Tanford, C. “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, Wiley, New York, 1973.
38. Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC, New York, 1999.
39. Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and Surfaces A”, 1996, 111, 195-202.
40. (a) Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W. Science. 1994, 265, 1413-1415.
(b) Sayari, A. Chem. Mater. 1996, 8, 1840-1852.
(c) Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Liu, J.;Kemner, K. M. Science. 1997, 276, 923-926.
41. (a) Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong,M. L. Adv. Meter. 1998, 10, 161-165.
(b) Moller, K.; Bein, T. Stud. Surf. Sci. Catal. 1998, 117, 53.
(c) Brunel, D. Microporous Mesoporous Mater. 1999, 27, 329.
(d) Impens, N. R. E. N.; Van der Voort, P.; Vansant, E. F. Microporous Mesoporous Mater. 1999, 28, 217-232.
(e) Clark, J. H.; Macquarrie, D. J.; Wilson, K. Stud. Surf. Sci. Catal.2000, 129, 251.
(f) Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater. 2003, 15,2161-2173.
42. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12, 1403-1419.
43. (a) Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7,1829-1832.
(b) Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285-3295.
44. Kim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10,467-470.
45. (a) Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Comm. 1996,1367-1368
(b) Mercier, L.; Pinnavaia, T. J. Chem. Mater. 2000, 12, 188.
(c) Kruk, M.; Asefa, T.; Coombs, N.; Jaroniec, M.; Qzin, G. A. J.Mater. Chem. 2002, 12, 3452-3457.
46. Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun.1999, 201-202.
47. (a) Mori, Y.; Pinnavaia, T. J. Chem. Mater. 2001, 13, 2173-2178.(b) Kao, H. M.; Shen, T. Y.; Wu, J. D.; Lee, L. P. Micro. and Meso.Mater. 2008, 110, 461-471.
(c) Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.; Gaber, B. P.J. Phys. Chem. B 2001, 105, 9935-9942.
(d) Kao, H. M.; Liao, C. H.; Palani, A.; Liao, Y. C. Micro. and Meso.Mater. 2008, 113, 212-223.
48. Macquarrie, D. J.; Jackson, D. B.; Mdoe, J. E.; Clark, J. H. New J.Chem. 1999, 23, 539-544.
49. Kruk, M.; Asefa, T.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc.2002, 124, 6383-6392.
50. Sayari, A.; Hamoudi, S. Chem. Mater. 2001, 13, 3151-3168.
51. (a) Kruk, M.; Asefa, T.; Whitnal, W.; Kruk, M.; Yoshina-Ishii, C.;Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 46, 13886.
(b) Sayari, A.; Hamoudi, S.; Yang, Y.; Moudrakovski, I. L.;Ripmeester, J. R. Chem. Mater.; 2000, 12, 3857-3863.
(c) Yang, Q.; Li, Y.; Zhang, L.; Yang, J.; Liu, J.; Li, C. J. Phys. Chem.B. 2004, 108, 7934-7937.
(d) Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc.2000, 122, 5660-5661.
52. Zheng, Y.; Shengyang, T.; Jinxiang Y. J. Mater. Chem. 2006, 16, 2347-2353.
53. Tang, Q.; Xu, Y.; Wu. D. Journal of Solid State Chemistry 2006, 179, 1513-1520.
54. Ho, K. Y.; McKay, G.; Yeung, K. L. Langmuir 2003, 19, 3019.
55. Nanguo, L.; Roger A. A.; Jeffrey, B. Chem. Commun., 2003, 370.
56. Chia-min Yang;Yangin Wang. Phys. Chem. Chem. Phys. 2004, 6,2461-2467.
57. Wahab, M. A.; Kim, I.; Ha, C. S. Micro. and Meso. Mater. 2004, 69, 19-27.
58. Rosenholm, J. M.; Czuryszkiewicz, T.; Kleitz, F. Langmuir 2007, 23, 4315-4323.
59. Bruzzoniti, M. C.; Prelle, A.; Sarzanini, C.; Onida, B.; Fiorilli, S.; Garrone. E. J. Sep. Sci. 2007, 30, 2414-2420.
60. Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.-S.; Che, S. J. Mater. Chem. 2007, 17, 1216-1221.
61. Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K., Chem. Commun. 2005, (16), 2125-2127.
62. Ryoo, R.; Joo, S. H.; Jun, S., J. Phys. Chem. B 1999, 103 (37),7743–7746.
63. Solovyov, L. A.; Zaikovskii, V. I.; Shmakov, A. N.; Belousov, O. V.;Ryoo, R., J. Phys. Chem. B 2002, 106 (47), 12198-12202.
64. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O., J. Am. Chem. Soc. 2000, 122, 10712-10713.
65. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Adv. Mater. 2001, 13 (9), 677-681.
66. Kleitz, F.; Hei Choi, S.; Ryoo, R., Chem. Commun. 2003, (17),2136-2137.
67. Ryoo, R.; Joo, S. H.; Jun, S.; Tsubakiyama, T.; Terasaki, O., “Ordered mesoporous carbon molecular sieves by templated synthesis: the structural varieties”.
68. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R., Nature 2001, 414 (6862), 470-470.
69. Lee, J. S.; Joo, S. H.; Ryoo, R., J. Am. Chem. Soc. 2002, 124 (7), 1156-1157.
70. Kim, T.-W.; Solovyov, L. A., J. Mater. Chem. 2006, 16 (15), 1445.
71. Gaslain, F. O.; Parmentier, J.; Valtchev, V. P.; Patarin, J., Chem. Commun. 2006, (9), 991-993.
72. Kim, T.-W.; Park, I.-S.; Ryoo, R., Angew. Chem. 2003, 115 (36), 4511-4515.
73. Kim, C. H.; Lee, D. K.; Pinnavaia, T. J., Langmuir 2004, 20 (13),5157-5159.
74. Fuertes, A. B.; Alvarez, S., Carbon 2004, 42 (15), 3049-3055.
75. Lu, A. H.; Schüth, F., Adv. Mater. 2006, 18 (14), 1793-1805.
76. Zhang, F. Q.; Meng, Y.; Gu, D.; Yan, Y.; Chen, Z. X.; Tu, B.; Zhao, D.Y., Chem. Mater. 2006, 18 (22), 5279-5288.
77. 國家同步輻射中心, http://www.srrc.gov.tw。
78. http://www.18show.cn/zt312565/zh-tw/Article_133072.html。
79. Baiker, A. Int. Chem. Eng. 1985, 17, 25.
80. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723.
81. 王奕凱, 邱宗明, 李秉傑合譯, 非均勻系催化原理及應用, 國立編譯館, 渤海堂文化公司, 台北, 1993.
82. Barrett, E. P.; Joyner, L. S.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373.
83. Gregg, S. J.; Sing, K. S. W.; Adsorption, Surface Area and Porosity, 2nd Ed. Academic press, New York, NY, 1982.
84. Ertl, G.; KnÖzinger, H.; Weitkamp, J. Handbook of Heterogeneous Catalysis. 1997, 3, 1058.
85. 劉銘璋; 林岱瑋; 王漢松; 張秋玲 第七章 熱分析, 台灣大學化學系.
86. http://www.hellotrade.com/scientific-benelux-ba/thermogravimetry-tga.html
87. 羅聖全; 電子顯微鏡介紹穿透式電子顯微鏡, 清華大學
88. http://www.hk-phy.org/atomic_world/tem/tem02_c.html。
89. 羅聖全; 電子顯微鏡介紹掃描式電子顯微鏡, 清華大學
90. http://www.aandb.com.tw/Page0004/uv_vis_nir_04_lambda_750.html。
91. Pan, Y. C.; Liao, C. H.; Kao, H. M. The Chinese Chemical Society, Taipei 2008, 66, 1.
92. Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K.V.; Griffin, R. G. J. Chem. Phys. 1995, 103, 6951.
93. Ashida, J.; Asakura, T. J. Magn. Reson. 2003, 165, 180.
94. http://www.doc88.com/p-712738885066.html。
95. Ting, C. C.; Chung,C. H.; Kao, H. M. Chem. Commun. 2011, 47, 5897.
96. (a) He, C.; Hu, X., Ind. Eng. Chem. Res. 2011, 50 (24), 14070-14083; (b) Hao, G.-P.; Li, W.-C.; Wang, S.; Zhang, S.; Lu, A.-H., Carbon 2010, 48 (12), 3330-3339.
97. Mohammadi, N.; Khani, H.; Gupta, V. K.; Amereh, E.; Agarwal, S., J.Colloid Interface Sci. 2011, 362 (2), 457-462.
98. Yan, C.; Wang, C.; Yao, J.; Zhang, L.; Liu, X., Colloid Surf. A-Physicochem. Eng. Asp. 2009, 333 (1-3), 115-119.
99. Chi, Y.; Geng, W.; Zhao, L.; Yan, X.; Yuan, Q.; Li, N.; Li, X., J.Colloid Interface Sci. 2012, 369 (1), 366-372.
100. Dong, Y.; Lin, H.; Qu, F., Chem. Eng. J. 2012, 193-194, 169-177.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊